A benchmarked comparison of software packages for time-lapse image processing of monolayer bacterial population dynamics
Time-lapse microscopy offers a powerful approach for analysing cellular activity. In particular, this technique is valuable for assessing the behaviour of bacterial populations, which can exhibit growth and intercellular interactions in monolayer. Such time-lapse imaging typically generates large qu...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
03.12.2023
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Time-lapse microscopy offers a powerful approach for analysing cellular activity. In particular, this technique is valuable for assessing the behaviour of bacterial populations, which can exhibit growth and intercellular interactions in monolayer. Such time-lapse imaging typically generates large quantities of data, limiting the options for manual investigation. Several of image processing software packages have been developed to facilitate analysis. It can thus be a challenge to identify the software package best suited to a particular research goal. Here, we compare four software packages that support analysis of 2D time-lapse images of cellular populations: CellProfiler, SuperSegger-Omnipose, DeLTA, and FAST. We compare their performance against benchmarked results on time-lapse observations of E. coli populations. Performance varies across the packages, with each of the four out-performing the others in at least one aspect of the analysis. Not surprisingly, the packages that have been in development for longer showed the strongest performance. We found that deep-learning based approaches to object segmentation outperformed traditional approaches, but the opposite was true for frame-to-frame object tracking. We offer these comparisons, together with insight on usability, computational efficiency, and feature availability, as a guide to researchers seeking image processing solutions.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://github.com/ingallslab/ImageProcessing-Benchmarking |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
ISSN: | 2692-8205 2692-8205 |
DOI: | 10.1101/2023.11.30.569426 |