Distribution of elements of a floor function set in arithmetical progression

Let \([t]\) be the integral part of the real number \(t\).The aim of this short note is to study the distribution of elements of the set \(\mathcal{S}(x) := \{[\frac{x}{n}] : 1\le n\le x\}\) in the arithmetical progression \(\{a+dq\}_{d\ge 0}\).Our result is as follows: the asymptotic formula\begin{...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Yu, Yahui, Wu, Jie
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 29.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let \([t]\) be the integral part of the real number \(t\).The aim of this short note is to study the distribution of elements of the set \(\mathcal{S}(x) := \{[\frac{x}{n}] : 1\le n\le x\}\) in the arithmetical progression \(\{a+dq\}_{d\ge 0}\).Our result is as follows: the asymptotic formula\begin{equation}\label{YW:result}S(x; q, a):= \sum_{\substack{m\in \mathcal{S}(x)\\ m\equiv a ({\rm mod}\,q)}} 1 = \frac{2\sqrt{x}}{q} + O((x/q)^{1/3}\log x)\end{equation}holds uniformly for \(x\ge 3\), \(1\le q\le x^{1/4}/(\log x)^{3/2}\) and \(1\le a\le q\),where the implied constant is absolute.The special case of \eqref{YW:result} with fixed \(q\) and \(a=q\) confirms a recent numeric test of Heyman.
ISSN:2331-8422
DOI:10.48550/arxiv.2112.14427