Tree-Level Color-Kinematics Duality from Pure Spinor Actions
We prove that the tree-level scattering amplitudes for (super) Yang-Mills theory in arbitrary dimensions and for M2-brane models exhibit color-kinematics (CK) duality. Our proof for Yang-Mills theory substantially simplifies existing ones in that it relies on the action alone and does not involve an...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
18.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We prove that the tree-level scattering amplitudes for (super) Yang-Mills theory in arbitrary dimensions and for M2-brane models exhibit color-kinematics (CK) duality. Our proof for Yang-Mills theory substantially simplifies existing ones in that it relies on the action alone and does not involve any computation; the proof for M2-brane models establishes this result for the first time. Explicitly, we combine the facts that Chern-Simons-type theories naturally come with a kinematic Lie algebra and that both Yang-Mills theory and M2-brane models are of Chern-Simons form when formulated in pure spinor space, extending previous work on Yang-Mills currents arXiv:2108.11708. Our formulation also provides explicit kinematic Lie algebras for the theories under consideration in the form of diffeomorphisms on pure spinor space. The pure spinor formulation of CK-duality is based on ordinary, cubic vertices, but we explain how ordinary CK-duality relates to notions of quartic-vertex 3-Lie algebra CK-duality for M2-brane models previously discussed in the literature. |
---|---|
Bibliography: | DMUS-MP-23/05, EMPT-23-04 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2303.13596 |