Exceptional-point Sensors Offer No Fundamental Signal-to-Noise Ratio Enhancement
Exceptional-point (EP) sensors are characterized by a square-root resonant frequency bifurcation in response to an external perturbation. This has lead numerous suggestions for using these systems for sensing applications. However, there is an open debate as to whether or not this sensitivity advant...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
17.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Exceptional-point (EP) sensors are characterized by a square-root resonant frequency bifurcation in response to an external perturbation. This has lead numerous suggestions for using these systems for sensing applications. However, there is an open debate as to whether or not this sensitivity advantage is negated by additional noise in the system. We show that an EP sensor's imprecision in measuring a generalized force is independent of its operating point's proximity to the EP. That is because frequency noises of fundamental origin in the sensor -- due to quantum and thermal fluctuations -- increase in a manner that exactly cancels the benefit of increased resonant frequency sensitivity near the EP. So the benefit of EP sensors is limited to the regime where sensing is limited by technical noises. Finally, we outline an EP sensor with phase-sensitive gain that does have an advantage even if limited by fundamental noises. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2401.04825 |