Skyrmion Echo in a system of interacting Skyrmions
We consider helical rotation of skyrmions confined in the potentials formed by nano-disks. Based on numerical and analytical calculations we propose the skyrmion echo phenomenon. The physical mechanism of the skyrmion echo formation is also proposed. Due to the distortion of the lattice, impurities,...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
13.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We consider helical rotation of skyrmions confined in the potentials formed by nano-disks. Based on numerical and analytical calculations we propose the skyrmion echo phenomenon. The physical mechanism of the skyrmion echo formation is also proposed. Due to the distortion of the lattice, impurities, or pinning effect, confined skyrmions experience slightly different local fields, which leads to dephasing of the initial signal. The interaction between skyrmions also can contribute to the dephasing process. However, switching the magnetization direction in the nanodiscs (e.g. by spin transfer torque) also switches the helical rotation of the skyrmions from clockwise to anticlockwise (or vice-versa), and this restores the initial signal (which is the essence of skyrmion echo). |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2209.05925 |