Electromagnetic field of a charge asymptotically approaching spherically symmetric black hole
We consider a test charged particle falling onto a Schwarzschild black hole and evaluate its electromagnetic field. The Regge-Wheeler equation is solved analytically by approximating the potential barrier with Dirac delta function and rectangular barrier. We show that for asymptotically large time m...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
29.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We consider a test charged particle falling onto a Schwarzschild black hole and evaluate its electromagnetic field. The Regge-Wheeler equation is solved analytically by approximating the potential barrier with Dirac delta function and rectangular barrier. We show that for asymptotically large time measured by a distant observer the electromagnetic field approaches the spherically symmetric electrostatic field exponentially fast. This implies that in the region accessible to a distant observer the initial state of separated charge and Schwarzschild black hole becomes asymptotically indistinguishable from the Reisnner-Nordstr\"om solution. Implications of this result for models with plasma accretion on black holes are discussed.7 a |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2305.18214 |