On indication, strict monotonicity, and efficiency of projections in a general class of path-based data envelopment models

Data envelopment analysis (DEA) theory formulates a number of desirable properties that DEA models should satisfy. Among these, indication, strict monotonicity, and strong efficiency of projections tend to be grouped together in the sense that, in individual models, typically, either all three are s...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Halická, Margaréta, Trnovská, Mária, Černý, Aleš
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 13.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Data envelopment analysis (DEA) theory formulates a number of desirable properties that DEA models should satisfy. Among these, indication, strict monotonicity, and strong efficiency of projections tend to be grouped together in the sense that, in individual models, typically, either all three are satisfied or all three fail at the same time. Specifically, in slacks-based graph models, the three properties are always met; in path-based models, such as radial models, directional distance function models, and the hyperbolic function model, the three properties, with some minor exceptions, typically all fail. Motivated by this observation, the article examines relationships among indication, strict monotonicity, and strong efficiency of projections in the class of path-based models over variable returns-to-scale technology sets. Under mild assumptions, it is shown that the property of strict monotonicity and strong efficiency of projections are equivalent, and that both properties imply indication. This paper also characterises a narrow class of technology sets and path directions for which the three properties hold in path-based models.
ISSN:2331-8422
DOI:10.48550/arxiv.2311.16382