Fault-tolerant quantum simulation of materials using Bloch orbitals

The simulation of chemistry is among the most promising applications of quantum computing. However, most prior work exploring algorithms for block-encoding, time-evolving, and sampling in the eigenbasis of electronic structure Hamiltonians has either focused on modeling finite-sized systems, or has...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Rubin, Nicholas C, Berry, Dominic W, Malone, Fionn D, White, Alec F, Khattar, Tanuj, DePrince, A Eugene, Sicolo, Sabrina, Kühn, Michael, Kaicher, Michael, Lee, Joonho, Ryan Babbush
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 10.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The simulation of chemistry is among the most promising applications of quantum computing. However, most prior work exploring algorithms for block-encoding, time-evolving, and sampling in the eigenbasis of electronic structure Hamiltonians has either focused on modeling finite-sized systems, or has required a large number of plane wave basis functions. In this work, we extend methods for quantum simulation with Bloch orbitals constructed from symmetry-adapted atom-centered orbitals so that one can model periodic \textit{ab initio} Hamiltonians using only a modest number of basis functions. We focus on adapting existing algorithms based on combining qubitization with tensor factorizations of the Coulomb operator. Significant modifications of those algorithms are required to obtain an asymptotic speedup leveraging translational (or, more broadly, Abelian) symmetries. We implement block encodings using known tensor factorizations and a new Bloch orbital form of tensor hypercontraction. Finally, we estimate the resources required to deploy our algorithms to classically challenging model materials relevant to the chemistry of Lithium Nickel Oxide battery cathodes within the surface code.
ISSN:2331-8422
DOI:10.48550/arxiv.2302.05531