Time-calibrated molecular phylogeny of pteropods

Pteropods are a widespread group of holoplanktonic gastropod molluscs and are uniquely suitable for study of long-term evolutionary processes in the open ocean because they are the only living metazoan plankton with a good fossil record. Pteropods have been proposed as bioindicators to monitor the i...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 6; p. e0177325
Main Authors Burridge, Alice K, Hörnlein, Christine, Janssen, Arie W, Hughes, Martin, Bush, Stephanie L, Marlétaz, Ferdinand, Gasca, Rebeca, Pierrot-Bults, Annelies C, Michel, Ellinor, Todd, Jonathan A, Young, Jeremy R, Osborn, Karen J, Menken, Steph B J, Peijnenburg, Katja T C A
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 12.06.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pteropods are a widespread group of holoplanktonic gastropod molluscs and are uniquely suitable for study of long-term evolutionary processes in the open ocean because they are the only living metazoan plankton with a good fossil record. Pteropods have been proposed as bioindicators to monitor the impacts of ocean acidification and in consequence have attracted considerable research interest, however, a robust evolutionary framework for the group is still lacking. Here we reconstruct their phylogenetic relationships and examine the evolutionary history of pteropods based on combined analyses of Cytochrome Oxidase I, 28S, and 18S ribosomal rRNA sequences and a molecular clock calibrated using fossils and the estimated timing of the formation of the Isthmus of Panama. Euthecosomes with uncoiled shells were monophyletic with Creseis as the earliest diverging lineage, estimated at 41-38 million years ago (mya). The coiled euthecosomes (Limacina, Heliconoides, Thielea) were not monophyletic contrary to the accepted morphology-based taxonomy; however, due to their high rate heterogeneity no firm conclusions can be drawn. We found strong support for monophyly of most euthecosome genera, but Clio appeared as a polyphyletic group, and Diacavolinia grouped within Cavolinia, making the latter genus paraphyletic. The highest evolutionary rates were observed in Heliconoides inflatus and Limacina bulimoides for both 28S and 18S partitions. Using a fossil-calibrated phylogeny that sets the first occurrence of coiled euthecosomes at 79-66 mya, we estimate that uncoiled euthecosomes evolved 51-42 mya and that most extant uncoiled genera originated 40-15 mya. These findings are congruent with a molecular clock analysis using the Isthmus of Panama formation as an independent calibration. Although not all phylogenetic relationships could be resolved based on three molecular markers, this study provides a useful resource to study pteropod diversity and provides general insight into the processes that generate and maintain their diversity in the open ocean.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceptualization: AKB EM JAT JRY KTCAP.Data curation: AKB CH MH SLB KJO.Formal analysis: AKB CH MH SLB FM.Funding acquisition: KTCAP SBJM JRY SLB KJO.Investigation: AKB CH MH SLB KTCAP.Methodology: AKB AWJ FM KTCAP.Project administration: AKB KTCAP.Resources: SLB RG ACPB EM JAT JRY KJO SBJM.Supervision: KTCAP EM JAT JRY KJO SBJM.Validation: AKB KTCAP.Visualization: AKB KTCAP.Writing – original draft: AKB KTCAP.Writing – review & editing: AKB CH AWJ MH SLB FM RG ACPB EM JAT JRY KJO SBJM KTCAP.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0177325