On the semiclassical evolution of quantum operators

The Heisenberg evolution of a given unitary operator corresponds classically to a fixed canonical transformation that is viewed through a moving coordinate system. The operators that form the bases of the Weyl representation and its Fourier transform, the chord representation, are, respectively, uni...

Full description

Saved in:
Bibliographic Details
Main Authors de Almeida, A. M. Ozorio, Brodier, O
Format Journal Article
LanguageEnglish
Published 23.02.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Heisenberg evolution of a given unitary operator corresponds classically to a fixed canonical transformation that is viewed through a moving coordinate system. The operators that form the bases of the Weyl representation and its Fourier transform, the chord representation, are, respectively, unitary reflection and translation operators. Thus, the general semiclassical study of unitary operators allows us to propagate arbitrary operators, including density operators, i.e. the Wigner function. The various propagation kernels are different representations of the superoperators which act on the space of operators of a closed quantum system. We here present the mixed semiclassical propagator, that takes translation chords to reflection centres, or vice versa. In contrast to the centre-centre propagator that directly evolves Wigner functions, it is guaranteed to be caustic free, having a simple WKB-like universal form for a finite time, whatever the number of degrees of freedom. Special attention is given to the near-classical region of small chords, since this dominates the averages of observables evaluated through the Wigner function.
DOI:10.48550/arxiv.quant-ph/0502152