Cerebral Blood Flow Measurement Using fMRI and PET: A Cross-Validation Study

An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI h...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Biomedical Imaging Vol. 2008; no. 1; pp. 165 - 176
Main Authors Chen, Jean J., Wieckowska, Marguerite, Meyer, Ernst, Pike, G. Bruce
Format Journal Article
LanguageEnglish
Published United States Hindawi Limiteds 01.01.2008
Hindawi Publishing Corporation
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1687-4188
1687-4196
DOI10.1155/2008/516359

Cover

Loading…
Abstract An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (ΔCBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using H2O15 PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average ΔCBF of 21.5±8.2% for FAIR versus 28.2±12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL ΔCBF for all 3 ROI types indicated no significant difference from unity (P>.05).
AbstractList An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (DeltaCBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using H(2)(15)O PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average DeltaCBF of 21.5 plus/minus 8.2% for FAIR versus 28.2 plus/minus 12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL DeltaCBF for all 3 ROI types indicated no significant difference from unity (P > .05).
An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes ( Delta CBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using H sub(2) super(15)O PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average Delta CBF of 21.5 plus or minus 8.2% for FAIR versus 28.2 plus or minus 12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL Delta CBF for all 3 ROI types indicated no significant difference from unity (P > .05).
An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes ( Δ CBF) measured using a flow‐sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using H 2   15 O PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region‐of‐interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average Δ CBF of 21.5 ± 8.2% for FAIR versus 28.2 ± 12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t ‐test comparison of the slopes of the linear fits of PET versus ASL Δ CBF for all 3 ROI types indicated no significant difference from unity ( P > .05).
An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (DeltaCBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using H(2) (15)O PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average DeltaCBF of 21.5 +/- 8.2% for FAIR versus 28.2 +/- 12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL DeltaCBF for all 3 ROI types indicated no significant difference from unity (P > .05).An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (DeltaCBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using H(2) (15)O PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average DeltaCBF of 21.5 +/- 8.2% for FAIR versus 28.2 +/- 12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL DeltaCBF for all 3 ROI types indicated no significant difference from unity (P > .05).
An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes ([[PQ_REPLACE:[math]]] Delta CBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using [[PQ_REPLACE:[math]]]H2[[PQ_REPLACE : [ math]]] < mml:mtext>O15 PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average [[PQ_REPLACE:[math]]] Delta CBF of [[PQ_REPLACE:[math]]]21.5 plus or minus 8.2% for FAIR versus [[PQ_REPLACE:[math]]]28.2 plus or minus 12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a [[PQ_REPLACE:[math]]]t< / mml:math>-test comparison of the slopes of the linear fits of PET versus ASL [[PQ_REPLACE:[math]]] Delta CBF for all 3 ROI types indicated no significant difference from unity ([[PQ_REPLACE:[math]]]P < /mml:mi>>.05).
An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (ΔCBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using H 2 15 O PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average ΔCBF of 21.5 ± 8.2% for FAIR versus 28.2 ± 12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t -test comparison of the slopes of the linear fits of PET versus ASL ΔCBF for all 3 ROI types indicated no significant difference from unity ( P > .05).
An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (ΔCBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using H2O15 PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average ΔCBF of 21.5±8.2% for FAIR versus 28.2±12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL ΔCBF for all 3 ROI types indicated no significant difference from unity (P>.05).
An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (Δ CBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using [subscript]H2[/subscript] O15 PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average Δ CBF of 21.5±8.2 % for FAIR versus 28.2±12.8 % for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t -test comparison of the slopes of the linear fits of PET versus ASL Δ CBF for all 3 ROI types indicated no significant difference from unity (P>.05 ).
An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (DeltaCBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using H(2) (15)O PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average DeltaCBF of 21.5 +/- 8.2% for FAIR versus 28.2 +/- 12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL DeltaCBF for all 3 ROI types indicated no significant difference from unity (P > .05).
Author Ernst Meyer
G. Bruce Pike
Marguerite Wieckowska
Jean J. Chen
AuthorAffiliation McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, PQ, Canada H3A 2B4
AuthorAffiliation_xml – name: McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, PQ, Canada H3A 2B4
Author_xml – sequence: 1
  givenname: Jean J.
  surname: Chen
  fullname: Chen, Jean J.
  organization: McConnell Brain Imaging CentreMontreal Neurological InstituteMcGill UniversityMontreal, PQCanadaH3A 2B4mcgill.ca
– sequence: 2
  givenname: Marguerite
  surname: Wieckowska
  fullname: Wieckowska, Marguerite
  organization: McConnell Brain Imaging CentreMontreal Neurological InstituteMcGill UniversityMontreal, PQCanadaH3A 2B4mcgill.ca
– sequence: 3
  givenname: Ernst
  surname: Meyer
  fullname: Meyer, Ernst
  organization: McConnell Brain Imaging CentreMontreal Neurological InstituteMcGill UniversityMontreal, PQCanadaH3A 2B4mcgill.ca
– sequence: 4
  givenname: G. Bruce
  surname: Pike
  fullname: Pike, G. Bruce
  organization: McConnell Brain Imaging CentreMontreal Neurological InstituteMcGill UniversityMontreal, PQCanadaH3A 2B4mcgill.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18825270$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gxB1FHEACLfWMP9MDUrtqYaWtqKDlanljZ-tVNi5O0qr_Hm9TFrZClNPY42deed6Z3WyrCY3LspdAPgBwvo-EqH0OgvLiSbYDQskRg0Jsrc9KbWe7bbsghDFg9Fm2nVLIUZKdbDp20c2iqfOjOgSbn9ThJj91pu2jW7qmyy9a38zz6vTrJDeNzc-Ozw_yw3wcQ9uOvpvaW9P50OTfut7ePs-eVqZu3Yv7uJddnByfjz-Ppl8-TcaH05GRVHQjVc6EK4QrJWMFQ8CZtNSlDtAKSxxYamU1Q1oxJwvKBa8sBUpEoVAZipzuZZNB1waz0FfRL0281cF4fZcIca5N7HxZO50EKlsyidQoJl1ZqBJ5mXSxkmjQJq2Pg9ZVP1s6W6aekxsbopsvjb_U83CtkXOafEwCb-8FYvjRu7bTS9-Wrq5N40LfaknTlxmlMpFv_klSCih4gY-CCECVIOy_QAlk5djrB-Ai9LFJQ9KKF0QIgkWCXv1pxdqDX9uSABiAcjX-6Cpd-u5u_skZX2sgerWRerWRetjIVPP-Qc1a9q_0u4G-9I01N_4ReDrAxkff-d8tnSEBDoiMkKECMAVQBCDdoNi8gOAapKA_AbdS_U8
CitedBy_id crossref_primary_10_1016_j_neuroimage_2018_05_050
crossref_primary_10_3389_fphys_2022_934731
crossref_primary_10_1002_jmri_24484
crossref_primary_10_1016_j_neuroimage_2016_09_007
crossref_primary_10_1002_jmri_27996
crossref_primary_10_1002_jmri_24407
crossref_primary_10_1177_0271678X16636393
crossref_primary_10_1007_s00259_009_1078_0
crossref_primary_10_1177_197140091102400113
crossref_primary_10_1007_s12311_024_01759_x
crossref_primary_10_1161_STROKEAHA_114_006365
crossref_primary_10_1016_j_nic_2012_02_003
crossref_primary_10_1038_jcbfm_2009_284
crossref_primary_10_1080_02699052_2022_2109746
crossref_primary_10_1016_j_neuroimage_2021_118773
crossref_primary_10_1016_j_optlaseng_2014_05_001
crossref_primary_10_1016_j_neuroimage_2010_03_008
crossref_primary_10_1098_rstb_2019_0631
crossref_primary_10_1016_j_neuroimage_2011_06_011
crossref_primary_10_1093_cercor_bhaa084
crossref_primary_10_1016_j_neuroimage_2011_10_046
crossref_primary_10_1093_neuros_nyx054
crossref_primary_10_1016_j_brainres_2015_05_007
crossref_primary_10_1016_j_nicl_2016_05_003
crossref_primary_10_1016_j_pscychresns_2010_02_010
crossref_primary_10_1038_jcbfm_2012_117
crossref_primary_10_3389_fphys_2021_629651
crossref_primary_10_1186_s13195_024_01652_z
crossref_primary_10_1109_JSEN_2024_3444192
crossref_primary_10_1016_j_neuroimage_2017_12_095
crossref_primary_10_12693_APhysPolA_127_1523
crossref_primary_10_5964_psyct_v6i2_75
crossref_primary_10_1016_j_jneumeth_2010_06_028
crossref_primary_10_1016_j_neuroimage_2011_11_085
crossref_primary_10_1002_jmri_23581
crossref_primary_10_1002_mrm_22218
crossref_primary_10_1007_s00117_013_2496_3
crossref_primary_10_1002_mrm_22611
crossref_primary_10_1161_STROKEAHA_111_635995
crossref_primary_10_3233_JAD_230640
Cites_doi 10.1006/nimg.1999.0496
10.1006/nimg.1999.0443
10.1073/pnas.95.4.1834
10.1002/mrm.20843
10.1073/pnas.96.16.9403
10.1006/nimg.2001.0933
10.1118/1.598652
10.1016/j.neuroimage.2005.10.038
10.1118/1.597000
10.1002/mrm.1910310208
10.1016/j.neuroimage.2006.09.015
10.1016/j.neuroimage.2005.02.028
10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X
10.1109/NSSMIC.1993.701845
10.1016/1053-8119(92)90006-9
10.1016/j.neuroimage.2004.01.017
10.1109/23.34613
10.1002/jmri.20451
10.1097/00004728-199403000-00005
10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z
10.1002/mrm.1910400308
10.1002/jmri.10021
10.1002/jmri.20362
10.1097/00004728-199207000-00024
10.1097/00004647-199809000-00002
10.1002/mrm.1910370321
10.1097/00004647-199907000-00001
10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N
10.1126/science.7754376
10.1002/mrm.1910390506
10.1097/00004647-199903000-00005
10.1016/j.neuroimage.2005.05.038
10.1006/nimg.2001.0916
10.1002/1522-2594(200009)44:3<450::AID-MRM16>3.0.CO;2-0
10.1002/1522-2594(200103)45:3<431::AID-MRM1056>3.0.CO;2-E
10.1109/23.106696
10.1006/nimg.1999.0526
10.1002/nbm.1940070112
10.1097/00004647-200209000-00013
10.1097/00004647-199609000-00002
10.1002/mrm.20262
ContentType Journal Article
Copyright Copyright © 2008
Copyright © 2008 Jean J. Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2008 Jean J. Chen et al. 2008
Copyright_xml – notice: Copyright © 2008
– notice: Copyright © 2008 Jean J. Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2008 Jean J. Chen et al. 2008
DBID 188
RHU
RHW
RHX
AAYXX
CITATION
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L7M
LK8
L~C
L~D
M0S
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1155/2008/516359
DatabaseName 华艺数位台湾学术文献数据库
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Middle East & Africa Database
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Technology Research Database
Engineering Research Database
CrossRef
MEDLINE - Academic
Engineering Research Database


Publicly Available Content Database

PubMed
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1687-4196
Editor Zhang, Yantian
Editor_xml – sequence: 1
  givenname: Yantian
  surname: Zhang
  fullname: Zhang, Yantian
EndPage 176
ExternalDocumentID oai_doaj_org_article_793fdc4723a847ec98c25ce792f72a2d
PMC2553188
2305513981
18825270
10_1155_2008_516359
P20151224005_200812_201801120019_201801120019_165_176
Genre Journal Article
GroupedDBID 188
24P
29J
2UF
2WC
3V.
4.4
53G
5GY
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAWTL
ABDBF
ABUWG
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
AEAQA
AFKRA
AFPKN
AFRAH
AHMBA
AINHJ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
BAWUL
BBNVY
BCGST
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CEFSP
CNMHZ
CS3
CWDGH
DIK
EBD
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IEA
IL9
KQ8
LK8
M48
M7P
ML~
M~E
O5R
O5S
OK1
P62
PGMZT
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHX
RNS
RPM
TR2
TUS
UKHRP
UNMZH
UZ5
WOQ
~8M
RHW
0R~
AAYXX
ACCMX
ACUHS
CITATION
IHR
ISR
ITC
OVT
PHGZM
PHGZT
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-a736t-8cb6e96ec74494212b7d3e5162d6d0e1d3d7fb23f4e793565fd313069828a3253
IEDL.DBID M48
ISSN 1687-4188
IngestDate Wed Aug 27 01:31:40 EDT 2025
Thu Aug 21 14:08:10 EDT 2025
Fri Sep 05 07:55:14 EDT 2025
Fri Sep 05 09:50:14 EDT 2025
Fri Sep 05 09:50:54 EDT 2025
Sun Aug 24 04:12:33 EDT 2025
Sun Jul 13 04:39:21 EDT 2025
Thu Apr 03 07:07:15 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Tue Jul 01 03:56:22 EDT 2025
Sun Jun 02 18:53:09 EDT 2024
Tue Oct 01 22:52:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a736t-8cb6e96ec74494212b7d3e5162d6d0e1d3d7fb23f4e793565fd313069828a3253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Recommended by Yantian Zhang
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2008/516359
PMID 18825270
PQID 859066029
PQPubID 23462
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_793fdc4723a847ec98c25ce792f72a2d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2553188
proquest_miscellaneous_733254337
proquest_miscellaneous_33126592
proquest_miscellaneous_21138604
proquest_miscellaneous_21137105
proquest_journals_859066029
pubmed_primary_18825270
crossref_citationtrail_10_1155_2008_516359
crossref_primary_10_1155_2008_516359
hindawi_primary_10_1155_2008_516359
airiti_journals_P20151224005_200812_201801120019_201801120019_165_176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01-01
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle International Journal of Biomedical Imaging
PublicationTitleAlternate Int J Biomed Imaging
PublicationYear 2008
Publisher Hindawi Limiteds
Hindawi Publishing Corporation
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Limiteds
– name: Hindawi Publishing Corporation
– name: John Wiley & Sons, Inc
– name: Wiley
References (21) 2006; 55
(24) 1997; 37
(23) 2006; 30
(26) 2002; 15
(2) 1999; 19
(25) 1998; 95
(4) 1998; 39
(16) 2001; 45
(28) 1999; 96
(27) 1999; 10
(6) 2007; 36
(15) 2000; 44
(33) 1989; 36
(34) 1996; 16
(40) 1992; 16
(9) 1994; 31
(35) 1995; 268
(36) 2002; 15
(5) 1999; 41
(10) 2005; 22
(39) 1994; 18
(7) 2005; 22
(19) 1997; 10
(38) 1993; 20
(20) 1998; 40
(32) 1989; 30
(41) 2000; 11
OllingerJ. M.JohnsG. C.Model-based scatter correction for fully 3D PETProceedings of IEEE Nuclear Science Symposium and Medical Imaging ConferenceOctober 2006San Diego, Calif, USA12641268
(37) 1992; 1
(3) 1999; 42
(11) 1998; 18
(42) 2004; 52
(30) 1990; 37
(18) 2004; 22
(22) 2005; 28
(1) 1994; 7
(12) 2002; 22
(17) 1999; 26
(29) 1999; 19
(14) 2005; 26
(8) 1999; 9
(13) 2001; 14
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_42_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
Ranger N. T. (e_1_2_6_32_2) 1989; 30
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_1_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
9465103 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834-9
12218421 - J Cereb Blood Flow Metab. 2002 Sep;22(9):1149-56
2786947 - J Nucl Med. 1989 Jun;30(6):1056-68
11771969 - Neuroimage. 2002 Jan;15(1):1-15
16337135 - Neuroimage. 2006 Apr 15;30(3):726-34
8133750 - Magn Reson Med. 1994 Feb;31(2):147-53
15508169 - Magn Reson Med. 2004 Nov;52(5):1190-9
10334901 - Neuroimage. 1999 Jun;9(6 Pt 1):573-85
7754376 - Science. 1995 May 12;268(5212):889-93
11771975 - Neuroimage. 2002 Jan;15(1):74-82
9581600 - Magn Reson Med. 1998 May;39(5):702-8
8413011 - Med Phys. 1993 Jul-Aug;20(4):1033-48
15110037 - Neuroimage. 2004 May;22(1):443-6
8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205
15971191 - J Magn Reson Imaging. 2005 Jul;22(1):119-24
16528707 - Magn Reson Med. 2006 Apr;55(4):865-73
11241700 - Magn Reson Med. 2001 Mar;45(3):431-5
8068529 - NMR Biomed. 1994 Mar;7(1-2):75-82
16000253 - Neuroimage. 2005 Oct 15;28(1):205-15
9727941 - Magn Reson Med. 1998 Sep;40(3):383-96
10679182 - Neuroimage. 2000 Feb;11(2):87-97
9343556 - Neuroimage. 1992 Aug;1(1):43-53
8784222 - J Cereb Blood Flow Metab. 1996 Sep;16(5):765-80
10542343 - Magn Reson Med. 1999 Nov;42(5):849-63
10975898 - Magn Reson Med. 2000 Sep;44(3):450-6
10413026 - J Cereb Blood Flow Metab. 1999 Jul;19(7):701-35
10430955 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9403-8
9055234 - Magn Reson Med. 1997 Mar;37(3):425-35
16261575 - J Magn Reson Imaging. 2005 Dec;22(6):737-40
9430354 - NMR Biomed. 1997 Jun-Aug;10(4-5):237-49
1629424 - J Comput Assist Tomogr. 1992 Jul-Aug;16(4):620-33
10371458 - Magn Reson Med. 1999 Jun;41(6):1246-54
11747021 - J Magn Reson Imaging. 2001 Dec;14(6):659-67
15907309 - Neuroimage. 2005 Jun;26(2):525-35
10501056 - Med Phys. 1999 Aug;26(8):1559-67
10078879 - J Cereb Blood Flow Metab. 1999 Mar;19(3):272-7
9740096 - J Cereb Blood Flow Metab. 1998 Sep;18(9):935-40
10547333 - Neuroimage. 1999 Nov;10(5):562-9
17113313 - Neuroimage. 2007 Jun;36(2):269-76
References_xml – volume: 40
  start-page: 383
  issue: 3
  year: 1998
  end-page: 396
  ident: 20
  article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling
– volume: 36
  start-page: 1108
  issue: 1, part 1
  year: 1989
  end-page: 1112
  ident: 33
  article-title: PET system calibrations and corrections for quantitative and spatially accurate images
– volume: 31
  start-page: 147
  issue: 2
  year: 1994
  end-page: 153
  ident: 9
  article-title: Radioactive microsphere validation of a volume localized continuous saturation perfusion measurement
– volume: 22
  start-page: 119
  issue: 1
  year: 2005
  end-page: 124
  ident: 7
  article-title: Spatially-confined arterial spin-labeling with FAIR
– volume: 30
  start-page: 726
  issue: 3
  year: 2006
  end-page: 734
  ident: 23
  article-title: The effect of global cerebral vasodilation on focal activation hemodynamics
– volume: 18
  start-page: 192
  issue: 2
  year: 1994
  end-page: 205
  ident: 39
  article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
– volume: 42
  start-page: 849
  issue: 5
  year: 1999
  end-page: 863
  ident: 3
  article-title: Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model
– volume: 19
  start-page: 272
  issue: 3
  year: 1999
  end-page: 277
  ident: 29
  article-title: Frequency-dependent changes in cerebral metabolic rate of oxygen during activation of human visual cortex
– reference: OllingerJ. M.JohnsG. C.Model-based scatter correction for fully 3D PETProceedings of IEEE Nuclear Science Symposium and Medical Imaging ConferenceOctober 2006San Diego, Calif, USA12641268
– volume: 37
  start-page: 671
  issue: 2
  year: 1990
  end-page: 675
  ident: 30
  article-title: A study of data loss and mispositioning due to pileup in 2-D detectors in PET
– volume: 55
  start-page: 865
  issue: 4
  year: 2006
  end-page: 873
  ident: 21
  article-title: Reducing contamination while closing the gap: BASSI RF pulses in PASL
– volume: 22
  start-page: 443
  issue: 1
  year: 2004
  end-page: 446
  ident: 18
  article-title: CBF changes during brain activation: fMRI vs. PET
– volume: 96
  start-page: 9403
  issue: 16
  year: 1999
  end-page: 9408
  ident: 28
  article-title: Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex
– volume: 18
  start-page: 935
  issue: 9
  year: 1998
  end-page: 940
  ident: 11
  article-title: Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with positron emission tomography in humans
– volume: 45
  start-page: 431
  issue: 3
  year: 2001
  end-page: 435
  ident: 16
  article-title: Perfusion-weighted imaging of interictal hypoperfusion in temporal lobe epilepsy using FAIR-HASTE: comparison with PET measurements
– volume: 19
  start-page: 701
  issue: 7
  year: 1999
  end-page: 735
  ident: 2
  article-title: Measuring cerebral blood flow using magnetic resonance imaging techniques
– volume: 26
  start-page: 1559
  issue: 8
  year: 1999
  end-page: 1567
  ident: 17
  article-title: Comparison of matched BOLD and FAIR 4.0T-fMRI with water PET brain volumes
– volume: 9
  start-page: 573
  issue: 6
  year: 1999
  end-page: 585
  ident: 8
  article-title: Stimulus-dependent BOLD and perfusion dynamics in human V1
– volume: 10
  start-page: 562
  issue: 5
  year: 1999
  end-page: 569
  ident: 27
  article-title: A FAIR study of motor cortex activation under normo- and hypercapnia induced by breath challenge
– volume: 16
  start-page: 620
  issue: 4
  year: 1992
  end-page: 633
  ident: 40
  article-title: Rapid automated algorithm for aligning and reslicing PET images
– volume: 44
  start-page: 450
  issue: 3
  year: 2000
  end-page: 456
  ident: 15
  article-title: PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans
– volume: 36
  start-page: 269
  issue: 2
  year: 2007
  end-page: 276
  ident: 6
  article-title: Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex
– volume: 10
  start-page: 237
  issue: 4-5
  year: 1997
  end-page: 249
  ident: 19
  article-title: Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling
– volume: 95
  start-page: 1834
  issue: 4
  year: 1998
  end-page: 1839
  ident: 25
  article-title: Calibrated functional MRI: mapping the dynamics of oxidative metabolism
– volume: 22
  start-page: 1149
  issue: 9
  year: 2002
  end-page: 1156
  ident: 12
  article-title: Absolute quantification of cerebral blood flow with magnetic resonance, reproducibility of the method, and comparison with positron emission tomography
– volume: 7
  start-page: 75
  issue: 1-2
  year: 1994
  end-page: 82
  ident: 1
  article-title: Tissue specific perfusion imaging using arterial spin labeling
– volume: 37
  start-page: 425
  issue: 3
  year: 1997
  end-page: 435
  ident: 24
  article-title: Perfusion imaging by a flow-sensitive alternating inversion recovery (fair) technique: application to functional brain imaging
– volume: 39
  start-page: 702
  issue: 5
  year: 1998
  end-page: 708
  ident: 4
  article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II)
– volume: 52
  start-page: 1190
  issue: 5
  year: 2004
  end-page: 1199
  ident: 42
  article-title: Bandwidth-modulated adiabatic RF pulses for uniform selective saturation and inversion
– volume: 15
  start-page: 74
  issue: 1
  year: 2002
  end-page: 82
  ident: 26
  article-title: Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation
– volume: 1
  start-page: 43
  issue: 1
  year: 1992
  end-page: 53
  ident: 37
  article-title: Anatomical mapping of functional activation in stereotactic coordinate space
– volume: 11
  start-page: 87
  issue: 2
  year: 2000
  end-page: 97
  ident: 41
  article-title: Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study
– volume: 26
  start-page: 525
  issue: 2
  year: 2005
  end-page: 535
  ident: 14
  article-title: Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: repeatabilily and comparison with PET in humans
– volume: 268
  start-page: 889
  issue: 5212
  year: 1995
  end-page: 893
  ident: 35
  article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging
– volume: 14
  start-page: 659
  issue: 6
  year: 2001
  end-page: 667
  ident: 13
  article-title: Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study
– volume: 28
  start-page: 205
  issue: 1
  year: 2005
  end-page: 215
  ident: 22
  article-title: Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges
– volume: 16
  start-page: 765
  issue: 5
  year: 1996
  end-page: 780
  ident: 34
  article-title: Cerebral water clearance in humans determined by PET: I. Theory and normal values
– volume: 15
  start-page: 1
  issue: 1
  year: 2002
  end-page: 15
  ident: 36
  article-title: A general statistical analysis for fMRI data
– volume: 30
  start-page: 1056
  issue: 6
  year: 1989
  end-page: 1068
  ident: 32
  article-title: The application of a masked orbiting transmission source for attenuation correction in PET
– volume: 41
  start-page: 1246
  issue: 6
  year: 1999
  end-page: 1254
  ident: 5
  article-title: QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling
– volume: 20
  start-page: 1033
  issue: 4
  year: 1993
  end-page: 1048
  ident: 38
  article-title: Review of MR image segmentation techniques using pattern recognition
– volume: 22
  start-page: 737
  issue: 6
  year: 2005
  end-page: 740
  ident: 10
  article-title: Arterial spin labeling: validity testing and comparison studies
– ident: e_1_2_6_27_2
  doi: 10.1006/nimg.1999.0496
– ident: e_1_2_6_8_2
  doi: 10.1006/nimg.1999.0443
– volume: 30
  start-page: 1056
  year: 1989
  ident: e_1_2_6_32_2
  article-title: The application of a masked orbiting transmission source for attenuation correction in PET
  publication-title: Journal of Nuclear Medicine
– ident: e_1_2_6_25_2
  doi: 10.1073/pnas.95.4.1834
– ident: e_1_2_6_21_2
  doi: 10.1002/mrm.20843
– ident: e_1_2_6_28_2
  doi: 10.1073/pnas.96.16.9403
– ident: e_1_2_6_36_2
  doi: 10.1006/nimg.2001.0933
– ident: e_1_2_6_17_2
  doi: 10.1118/1.598652
– ident: e_1_2_6_23_2
  doi: 10.1016/j.neuroimage.2005.10.038
– ident: e_1_2_6_38_2
  doi: 10.1118/1.597000
– ident: e_1_2_6_9_2
  doi: 10.1002/mrm.1910310208
– ident: e_1_2_6_6_2
  doi: 10.1016/j.neuroimage.2006.09.015
– ident: e_1_2_6_14_2
  doi: 10.1016/j.neuroimage.2005.02.028
– ident: e_1_2_6_19_2
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X
– ident: e_1_2_6_31_2
  doi: 10.1109/NSSMIC.1993.701845
– ident: e_1_2_6_37_2
  doi: 10.1016/1053-8119(92)90006-9
– ident: e_1_2_6_18_2
  doi: 10.1016/j.neuroimage.2004.01.017
– ident: e_1_2_6_33_2
  doi: 10.1109/23.34613
– ident: e_1_2_6_10_2
  doi: 10.1002/jmri.20451
– ident: e_1_2_6_39_2
  doi: 10.1097/00004728-199403000-00005
– ident: e_1_2_6_3_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z
– ident: e_1_2_6_20_2
  doi: 10.1002/mrm.1910400308
– ident: e_1_2_6_13_2
  doi: 10.1002/jmri.10021
– ident: e_1_2_6_7_2
  doi: 10.1002/jmri.20362
– ident: e_1_2_6_40_2
  doi: 10.1097/00004728-199207000-00024
– ident: e_1_2_6_11_2
  doi: 10.1097/00004647-199809000-00002
– ident: e_1_2_6_24_2
  doi: 10.1002/mrm.1910370321
– ident: e_1_2_6_2_2
  doi: 10.1097/00004647-199907000-00001
– ident: e_1_2_6_5_2
  doi: 10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N
– ident: e_1_2_6_35_2
  doi: 10.1126/science.7754376
– ident: e_1_2_6_4_2
  doi: 10.1002/mrm.1910390506
– ident: e_1_2_6_29_2
  doi: 10.1097/00004647-199903000-00005
– ident: e_1_2_6_22_2
  doi: 10.1016/j.neuroimage.2005.05.038
– ident: e_1_2_6_26_2
  doi: 10.1006/nimg.2001.0916
– ident: e_1_2_6_15_2
  doi: 10.1002/1522-2594(200009)44:3<450::AID-MRM16>3.0.CO;2-0
– ident: e_1_2_6_16_2
  doi: 10.1002/1522-2594(200103)45:3<431::AID-MRM1056>3.0.CO;2-E
– ident: e_1_2_6_30_2
  doi: 10.1109/23.106696
– ident: e_1_2_6_41_2
  doi: 10.1006/nimg.1999.0526
– ident: e_1_2_6_1_2
  doi: 10.1002/nbm.1940070112
– ident: e_1_2_6_12_2
  doi: 10.1097/00004647-200209000-00013
– ident: e_1_2_6_34_2
  doi: 10.1097/00004647-199609000-00002
– ident: e_1_2_6_42_2
  doi: 10.1002/mrm.20262
– reference: 10542343 - Magn Reson Med. 1999 Nov;42(5):849-63
– reference: 11747021 - J Magn Reson Imaging. 2001 Dec;14(6):659-67
– reference: 8413011 - Med Phys. 1993 Jul-Aug;20(4):1033-48
– reference: 9465103 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834-9
– reference: 10547333 - Neuroimage. 1999 Nov;10(5):562-9
– reference: 9727941 - Magn Reson Med. 1998 Sep;40(3):383-96
– reference: 9055234 - Magn Reson Med. 1997 Mar;37(3):425-35
– reference: 15907309 - Neuroimage. 2005 Jun;26(2):525-35
– reference: 15508169 - Magn Reson Med. 2004 Nov;52(5):1190-9
– reference: 11241700 - Magn Reson Med. 2001 Mar;45(3):431-5
– reference: 10501056 - Med Phys. 1999 Aug;26(8):1559-67
– reference: 10371458 - Magn Reson Med. 1999 Jun;41(6):1246-54
– reference: 10975898 - Magn Reson Med. 2000 Sep;44(3):450-6
– reference: 17113313 - Neuroimage. 2007 Jun;36(2):269-76
– reference: 7754376 - Science. 1995 May 12;268(5212):889-93
– reference: 16000253 - Neuroimage. 2005 Oct 15;28(1):205-15
– reference: 9581600 - Magn Reson Med. 1998 May;39(5):702-8
– reference: 16337135 - Neuroimage. 2006 Apr 15;30(3):726-34
– reference: 15110037 - Neuroimage. 2004 May;22(1):443-6
– reference: 9430354 - NMR Biomed. 1997 Jun-Aug;10(4-5):237-49
– reference: 11771969 - Neuroimage. 2002 Jan;15(1):1-15
– reference: 16261575 - J Magn Reson Imaging. 2005 Dec;22(6):737-40
– reference: 9343556 - Neuroimage. 1992 Aug;1(1):43-53
– reference: 10413026 - J Cereb Blood Flow Metab. 1999 Jul;19(7):701-35
– reference: 10334901 - Neuroimage. 1999 Jun;9(6 Pt 1):573-85
– reference: 11771975 - Neuroimage. 2002 Jan;15(1):74-82
– reference: 8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205
– reference: 10679182 - Neuroimage. 2000 Feb;11(2):87-97
– reference: 1629424 - J Comput Assist Tomogr. 1992 Jul-Aug;16(4):620-33
– reference: 9740096 - J Cereb Blood Flow Metab. 1998 Sep;18(9):935-40
– reference: 2786947 - J Nucl Med. 1989 Jun;30(6):1056-68
– reference: 12218421 - J Cereb Blood Flow Metab. 2002 Sep;22(9):1149-56
– reference: 15971191 - J Magn Reson Imaging. 2005 Jul;22(1):119-24
– reference: 8784222 - J Cereb Blood Flow Metab. 1996 Sep;16(5):765-80
– reference: 8068529 - NMR Biomed. 1994 Mar;7(1-2):75-82
– reference: 8133750 - Magn Reson Med. 1994 Feb;31(2):147-53
– reference: 16528707 - Magn Reson Med. 2006 Apr;55(4):865-73
– reference: 10430955 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9403-8
– reference: 10078879 - J Cereb Blood Flow Metab. 1999 Mar;19(3):272-7
SSID ssj0044143
Score 1.9748363
Snippet An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
hindawi
airiti
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 165
SubjectTerms Accuracy
Brain
Descriptive labeling
Human subjects
Medical imaging
Medical research
Methods
Validation studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5KKKU9lDZ9RE0fC82pIOx9a3tLjE1a6hJKUnITq90VMRi5JA6h_74zWvmhkqSXnoy9g2zNzux8oxl_Q8iB1ZXzsmY5BGOVS-NCbmsW80px7TxgWBUxUZx-18dn8uu5Ot8a9YU9YYkeOCluAPZTBy8NFw4O0uhtAVfw0VheG-54wNMXYt4qmUpnMMT41FqvwYUkK4run3kQPAdY8B8ogCFIT_rQzZA7qBeUWu5-gMMXmBTfzG6Dnn93UG6FpMkz8rTDkvQw3cNz8iA2u-TJFsPgLnk07WrnL8i3UbzEKvGcHmGzOp3MFzd0unlESNvuAVpPf3yhrgn0ZHz6mR7SEf7i_CfA9TR9iWLn4e-X5GwyPh0d590shdwZoZd54SsdrY7eSGmxClyZICKogQcdhpEFEUxdcVFLUK0AlFcHAeFNW8jInOBKvCI7zaKJe4RWQcbAo3d1AcmLjM7FwovCWxYAzYiQkXHSatm5w1V5AjBDsbZfVbWDLxmHFwbRkWFPl-2_YVqVzOiMfFptSuk7wnKcmzEv28RFpSuVaSszcrAW_pV4Om4XO8LdXYsguXb7AZhc2Zlc-S-Ty8jHzjbu_6r9ld1sFFEoCxhvyGH1w3oVHBqrNK6Ji-urEjJyAbBP3S9R6KG8W0IIxrFenhF6h4QRAmkQhMnI62TKm3uBpEtxM8yI6Rl5T2n9lWZ20TKTg29DjCje_A8t75PHqTcHH3e9JTvLy-v4DgDgsnrf-voflfhNsw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB6aHEp7KG36iJo-FppTQcT73u0tMTZuqUsoSfFNrHZXxGDkEjuE_vvOSrIdp0noSUg7sqTZGX_faEazAIdWlc6LiuYIxjIX2oXcVjTmpWTKeeSwMqZAcfxDjc7Ft4mcdAWyi39T-Ih2RylDfySRN0i7AztoXykmH01W_7eI520ZvUJ3EdSY7iu8W6ciwrhp6hO0BUBNn36kvhcpAL6e3kUzb1dL3oCf4XN41vFGctxO9At4FOs9eHqjm-AePB53efKX8L0fL1NGeEZOUmE6Gc7m12S8eR1ImkoBUo1_fiWuDuR0cPaFHJN-uuP8F1LzdqUlkqoM_7yC8-HgrD_Ku3UTcqe5WubGlypaFb0WwqaMb6kDj6gGFlToRRp40FXJeCUieicyuipwhDJlMfpynEn-GnbreR33gZRBxMCid5XBQEVE56Lx3HhLAzIXHjIYtFotOtNfFKdIKSRtalNls8glZbihiIQ01W_Z7R2qZEG1yuDzalIK3zUnT2tkzIomSJHtLxXtVGZwuBb-3fbkuFvsJM3uWiQ10m4OoHEVnV8WqIAqeKEZd4jT0VuDBupRL6zSzDF8wE-dbTx8qYOV3WwUYaRFPtdjOPpxPYrOmzIyro7zq0WB0TdHiicfljCqJ-6X4JyylBvPgNwjoTlPLQ-4zuBNa8qbZ8EASzLdy0BvGfmW0rZH6ulF04Uc_RjxwLz9LwUdwJO20Ca9u3oHu8vLq_ge2dyy_NA4818RNDpO
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbOsb2MLbuy-s-BOvTwCT6lvcympDQjaWE0o6-GVmS10CwuySl7L_fyVaSZrR5ComPxDrf6fc73eUOocNMFsbykqQAxiLlyrg0K4lPC0GlscBhhQ-B4vhEHp_zHxfiItbmLGJZ5WpPbDZqV9twRt7VIgN07NHs29WfNAyNCsnVOEHjIdqDHViLDtrrD08mp6utGKC-rbCX4EmcaB3_oAcY2g15_64ANhK6lD4y09BCaAubmhb-wIovQ2x8M72Lgf5fSHkLmUbP0bNIKfFRawMv0ANf7aOntxoN7qPH45hCf4l-Dvw8JItnuB9q1vFoVt_g8eakEDdFBLgcn37HpnJ4Mjz7io_wINxx-gtYezuECYcCxL-v0PloeDY4TuNIhdQoJpeptoX0mfRWcZ6FZHChHPOgBuqk63nimFNlQVnJPTgukL3SMUA5mUFgZhgV7DXqVHXl3yJcOO4d9daUGmIY7o3x2jJtM-KA1DCXoGGr1Tx6xSKfANsQpClbFc38S0LhhQBIklDalW2_IVLkRMkEfVk9lNzGvuVhfMYsb-IX0X5T3j7KBB2uha_adh13i_XD012LhB7bzQf1_HceXTYHBZTOckWZAQj3NtNguxb0QktFDYUFfo62sfunDlZ2s1HE2pgT9Gl9Ffw6JGtM5evrRQ6BOQP2J3ZLaNnj90swRmhImycI3yOhGAvdEJhK0JvWlDdrgdhLUNVLkNoy8i2lbV-pppdNg3JwcYAK_W7n0g_Qk7b2JhxnvUed5fzafwCCtyw-Rjf-B1xeRfg
  priority: 102
  providerName: ProQuest
Title Cerebral Blood Flow Measurement Using fMRI and PET: A Cross-Validation Study
URI https://www.airitilibrary.com/Article/Detail/P20151224005-200812-201801120019-201801120019-165-176
https://dx.doi.org/10.1155/2008/516359
https://www.ncbi.nlm.nih.gov/pubmed/18825270
https://www.proquest.com/docview/859066029
https://www.proquest.com/docview/21137105
https://www.proquest.com/docview/21138604
https://www.proquest.com/docview/33126592
https://www.proquest.com/docview/733254337
https://pubmed.ncbi.nlm.nih.gov/PMC2553188
https://doaj.org/article/793fdc4723a847ec98c25ce792f72a2d
Volume 2008
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELf2ISF4QDBghEGxxJ6QwupvBwkhNrUURKeqWqW-RU7sbJVKCl2nwX_P2UnbZerGS6o216Q53-n3O9_1DqHDRGYm5wWJAYxFzJWxcVIQF2eCSpMDhxXOB4r9U9kb8e9jMd5Cy2GctQIvN4Z2fp7UaD798Of338_g8J-Cwwtx5FP4RwKIhUi20S5AkvTm3eerdAJAflVpL8GjONG6_qPerS8DCJmJbyXUwKjQyh_Y8YWPka8nm5jo7YLKGwjVfYIe19QSf6ls4SnacuUeenSj4eAeetCvU-nP0I8TN_dJ4ykOteu4mM6u8c_1jiH2FfHnuOgPv2FTWjzonH3EBodfHIN5TqphTDj0p32ORt3O2UkvrkcrxEYxuYh1nkmXSJcrzhOfFM6UZQ7UQK20bUcss6rIKCu4AwcG0ldYBmgnEwjQDKOCvUA75ax0LxHOLHeWutwUGmIZ7oxxOmc6T4gFcsNshDqVVtPl4qYDYB2ChPJVEeZgEgovBMCS-BKvpPmGSJESJSP0frkoaV73L_djNKZpiGNEdaW0WsoIHa6Ef1VtOzaLHfvVXYn4Xtvhg9n8PK1dNwUFFDbnijIDUO7yRIMN56AXWihqKDzgu9o27r_VwdJu1orQIgHK16Zw9u3qLPi3T9qY0s2uLlMI0BmwQHG_hJZtfrcEY4T69HmE8B0SijHfFYGpCO1Xprx-FojBBFXtCKmGkTeU1jxTTi5Co3JwdYAM_er_tz1AD6tCHL-39RrtLOZX7g2wvUXWQttqrOCou19baPe4czoYtsLOSSv4OByHvfE_Z_pOyg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5VBXE8ICiXKdCVKC9IVrK3jYRQGxISmlQVaqu-mfXumkaKnJKkivqj-I_M-kga1OatT1HiUeydneObnfEMQruxTLXhGQnBGYuQK23DOCMuTAWV2gCGFc4HioND2T3hP87E2Qb6W78L48sqa5tYGGo7Nv6MvBGJGLxjk8ZfL_6EfmiUT67WEzRKqThwV3OI2KZfet9gez9S2mkft7phNVQg1IrJWRiZVLpYOqM4j306NFWWOUEktdI2HbHMqiylLOMORBfgTmYZ2HkZQ2iiGfVDIsDi3-OMxb5Vf9T5Xht-ABZlPb8EveUkiqrXAcFjN3yVQQNuwnxP1Pt66BsWrXjCYmAAYPBzH4nPhzfh3f_LNq_5wc5T9KQCsHivlLhnaMPlW-jxtbaGW-jBoErYP0f9lpv41PQI7_sKedwZjed4sDyXxEXJAs4GP3tY5xYftY8_4z3c8k8cnkKMUI58wr7c8eoFOrkTXr9Em_k4d68RTi13ljqjswgiJu60dpFhkYmJBQjFbIDaJVeTSgenyRFgG0GKIllRTNskFD4IuGTiC8ni1S9EioQoGaBP9aYkpuqS7od1jJIiWhLlPyXlVgZod0F8UTYHuZls3-_ugsR39C5-GE9-J5WBSIABmTVcUaYBMDgTR6ApBvhCM0U1hQV-qGRj_a22a7lZMmKhOgHaWVwFK-JTQzp348tpQglhgDXFeopINvntFIwR6pP0AcK3UCjGfO8FpgL0qhTl5Vog0hNUNQOkVoR8hWmrV_LhedEOHQwKOKbozdql76CH3eNBP-n3Dg-20aOy6scfpL1Fm7PJpXsH0HKWvi8UGqNfd21B_gHAv3_i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELdQmdD2MG3sK7ANS2Mvk6LWdmwnk6aJllZ00KpCMPEWHNsZlaoU2qKKP23_3c75aOkEfeOpanNq4vN9-n65Q2g_EonSQUp8cMbcD6QyfpQS6yecCqUhhuXWJYq9vjg6D35d8IsN9Ld6F8bBKiubmBtqM9bujLwe8gi8Y4NG9bRERQwOOz-vb3w3QMoVWqtpGoWEHNu7OWRv0x_dQ9jqr5R22metI78cMOArycTMD3UibCSslkEQudJoIg2znAhqhGlYYpiRaUJZGlgQYwh9UsPA5osI0hTFqBsYAdZ_U4JTDGtos9nuD04rNwBhRoHuF6DFAQnD8uVA8N91hzmow22Y65D6TA1d-6IVv5iPD4CI_Mrl5fPhQ9Hv_yDOe16x8wq9LMNZfFDI32u0YbNt9OJek8NttNUry_dv0EnLTlyheoSbDi-PO6PxHPeWp5Q4BzDgtHfaxSozeNA--44PcMs9sf8bMoZiABR24Me7t-j8Sbj9DtWycWY_IJyYwBpqtUpDyJ8Cq5QNNQt1RAwEVMx4qF1wNS41choPINLhJIfM8nz2JqHwQcBBEwcri1a_EMFjIoWHvlWbEuuyZ7ob3TGK89yJF_8UF1vpof0F8XXRKuRhsqbb3QWJ6--d_zCe_IlLcxEDA1KjA0mZgvDB6igEvdHAF5pKqigs8EspG-tvtVvJzZIRC0Xy0N7iKtgUVyhSmR3fTmNKCIPIk6-nCEUjeJyCMUJdyd5D-BEKyZjrxMCkh94XorxcC-R9nMqGh-SKkK8wbfVKNrzKm6ODeQE3Fe6sXfoe2gLrEZ90-8e76HkBAXKnah9RbTa5tZ8gzpwln0uNxujyqY3IP_qXhX0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerebral+blood+flow+measurement+using+fMRI+and+PET%3A+a+cross-validation+study&rft.jtitle=International+journal+of+biomedical+imaging&rft.au=Chen%2C+Jean+J&rft.au=Wieckowska%2C+Marguerite&rft.au=Meyer%2C+Ernst&rft.au=Pike%2C+G+Bruce&rft.date=2008-01-01&rft.issn=1687-4188&rft.volume=2008&rft.spage=516359&rft_id=info:doi/10.1155%2F2008%2F516359&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2FP20151224005-c.jpg