Cerebral Blood Flow Measurement Using fMRI and PET: A Cross-Validation Study

An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI h...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Biomedical Imaging Vol. 2008; no. 1; pp. 165 - 176
Main Authors Chen, Jean J., Wieckowska, Marguerite, Meyer, Ernst, Pike, G. Bruce
Format Journal Article
LanguageEnglish
Published United States Hindawi Limiteds 01.01.2008
Hindawi Publishing Corporation
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1687-4188
1687-4196
DOI10.1155/2008/516359

Cover

Loading…
More Information
Summary:An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (ΔCBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using H2O15 PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average ΔCBF of 21.5±8.2% for FAIR versus 28.2±12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL ΔCBF for all 3 ROI types indicated no significant difference from unity (P>.05).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Recommended by Yantian Zhang
ISSN:1687-4188
1687-4196
DOI:10.1155/2008/516359