Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus

Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 3; p. e0194155
Main Author Shellnutt, J. Gregory
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.03.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The author has declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0194155