Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming

The Greenland ice sheet (GrIS) is a growing contributor to global sea-level rise , with recent ice mass loss dominated by surface meltwater runoff . Satellite observations reveal positive trends in GrIS surface melt extent , but melt variability, intensity and runoff remain uncertain before the sate...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 564; no. 7734; pp. 104 - 108
Main Authors Trusel, Luke D, Das, Sarah B, Osman, Matthew B, Evans, Matthew J, Smith, Ben E, Fettweis, Xavier, McConnell, Joseph R, Noël, Brice P Y, van den Broeke, Michiel R
Format Journal Article Web Resource
LanguageEnglish
Published England Nature Publishing Group 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Greenland ice sheet (GrIS) is a growing contributor to global sea-level rise , with recent ice mass loss dominated by surface meltwater runoff . Satellite observations reveal positive trends in GrIS surface melt extent , but melt variability, intensity and runoff remain uncertain before the satellite era. Here we present the first continuous, multi-century and observationally constrained record of GrIS surface melt intensity and runoff, revealing that the magnitude of recent GrIS melting is exceptional over at least the last 350 years. We develop this record through stratigraphic analysis of central west Greenland ice cores, and demonstrate that measurements of refrozen melt layers in percolation zone ice cores can be used to quantifiably, and reproducibly, reconstruct past melt rates. We show significant (P < 0.01) and spatially extensive correlations between these ice-core-derived melt records and modelled melt rates and satellite-derived melt duration across Greenland more broadly, enabling the reconstruction of past ice-sheet-scale surface melt intensity and runoff. We find that the initiation of increases in GrIS melting closely follow the onset of industrial-era Arctic warming in the mid-1800s, but that the magnitude of GrIS melting has only recently emerged beyond the range of natural variability. Owing to a nonlinear response of surface melting to increasing summer air temperatures, continued atmospheric warming will lead to rapid increases in GrIS runoff and sea-level contributions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-85057733290
ISSN:0028-0836
1476-4687
1476-4687
DOI:10.1038/s41586-018-0752-4