GateNet: Gating-Enhanced Deep Network for Click-Through Rate Prediction

Advertising and feed ranking are essential to many Internet companies such as Facebook. Among many real-world advertising and feed ranking systems, click through rate (CTR) prediction plays a central role. In recent years, many neural network based CTR models have been proposed and achieved success...

Full description

Saved in:
Bibliographic Details
Main Authors Huang, Tongwen, She, Qingyun, Wang, Zhiqiang, Zhang, Junlin
Format Journal Article
LanguageEnglish
Published 06.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Advertising and feed ranking are essential to many Internet companies such as Facebook. Among many real-world advertising and feed ranking systems, click through rate (CTR) prediction plays a central role. In recent years, many neural network based CTR models have been proposed and achieved success such as Factorization-Machine Supported Neural Networks, DeepFM and xDeepFM. Many of them contain two commonly used components: embedding layer and MLP hidden layers. On the other side, gating mechanism is also widely applied in many research fields such as computer vision(CV) and natural language processing(NLP). Some research has proved that gating mechanism improves the trainability of non-convex deep neural networks. Inspired by these observations, we propose a novel model named GateNet which introduces either the feature embedding gate or the hidden gate to the embedding layer or hidden layers of DNN CTR models, respectively. The feature embedding gate provides a learnable feature gating module to select salient latent information from the feature-level. The hidden gate helps the model to implicitly capture the high-order interaction more effectively. Extensive experiments conducted on three real-world datasets demonstrate its effectiveness to boost the performance of various state-of-the-art models such as FM, DeepFM and xDeepFM on all datasets.
DOI:10.48550/arxiv.2007.03519