Betti numbers of the tangent cones of monomial space curves
Let $H = \langle n_1, n_2, n_3\rangle$ be a numerical semigroup. Let $\tilde H$ be the interval completion of $H$, namely the semigroup generated by the interval $\langle n_1, n_1+1, \ldots, n_3\rangle$. Let $K$ be a field and $K[H]$ the semigroup ring generated by $H$. Let $I_H^*$ be the defining i...
Saved in:
Main Authors | , , |
---|---|
Format | Journal Article |
Language | English |
Published |
10.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let $H = \langle n_1, n_2, n_3\rangle$ be a numerical semigroup. Let $\tilde
H$ be the interval completion of $H$, namely the semigroup generated by the
interval $\langle n_1, n_1+1, \ldots, n_3\rangle$. Let $K$ be a field and
$K[H]$ the semigroup ring generated by $H$. Let $I_H^*$ be the defining ideal
of the tangent cone of $K[H]$. In this paper, we describe the defining
equations of $I_H^*$. From that, we establish the Herzog-Stamate conjecture for
monomial space curves stating that $\beta_i(I_H^*) \le \beta_i(I_{\tilde H}^*)$
for all $i$, where $\beta_i(I_H^*)$ and $\beta_i(I_{\tilde H}^*)$ are the $i$th
Betti numbers of $I_H^*$ and $I_{\tilde H}^*$ respectively. |
---|---|
AbstractList | Let $H = \langle n_1, n_2, n_3\rangle$ be a numerical semigroup. Let $\tilde
H$ be the interval completion of $H$, namely the semigroup generated by the
interval $\langle n_1, n_1+1, \ldots, n_3\rangle$. Let $K$ be a field and
$K[H]$ the semigroup ring generated by $H$. Let $I_H^*$ be the defining ideal
of the tangent cone of $K[H]$. In this paper, we describe the defining
equations of $I_H^*$. From that, we establish the Herzog-Stamate conjecture for
monomial space curves stating that $\beta_i(I_H^*) \le \beta_i(I_{\tilde H}^*)$
for all $i$, where $\beta_i(I_H^*)$ and $\beta_i(I_{\tilde H}^*)$ are the $i$th
Betti numbers of $I_H^*$ and $I_{\tilde H}^*$ respectively. |
Author | Tu, Nguyen Chanh Vu, Thanh Lan, Nguyen P. H |
Author_xml | – sequence: 1 givenname: Nguyen P. H surname: Lan fullname: Lan, Nguyen P. H – sequence: 2 givenname: Nguyen Chanh surname: Tu fullname: Tu, Nguyen Chanh – sequence: 3 givenname: Thanh surname: Vu fullname: Vu, Thanh |
BackLink | https://doi.org/10.48550/arXiv.2307.05589$$DView paper in arXiv |
BookMark | eNotj81OwzAQhH2AAxQegBN-gYRN1hvb4gQVf1IlLr1HjrOGSI1TOW4Fb08JnEYa6RvNdynO4hRZiJsKSmWI4M6lr-FY1gi6BCJjL8T9I-c8yHgYO06znILMnyyzix8cs_QnfinHKU7j4HZy3jvP0h_SkecrcR7cbubr_1yJ7fPTdv1abN5f3tYPm8I12hbcaCAVOggQPFY1OQvI2vRAaLzWXdX3KgSqA1SItvaNQUvqhCJjpzSuxO3f7PK-3adhdOm7_bVoFwv8AdULQro |
ContentType | Journal Article |
Copyright | http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: http://creativecommons.org/licenses/by/4.0 |
DBID | AKZ GOX |
DOI | 10.48550/arxiv.2307.05589 |
DatabaseName | arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2307_05589 |
GroupedDBID | AKZ GOX |
ID | FETCH-LOGICAL-a679-e67054fb0f0fc3125a903e78d0538c77b1dd4ff52f013392c6839546793e3b473 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:38:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a679-e67054fb0f0fc3125a903e78d0538c77b1dd4ff52f013392c6839546793e3b473 |
OpenAccessLink | https://arxiv.org/abs/2307.05589 |
ParticipantIDs | arxiv_primary_2307_05589 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-10 |
PublicationDateYYYYMMDD | 2023-07-10 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-10 day: 10 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
Score | 1.8917302 |
SecondaryResourceType | preprint |
Snippet | Let $H = \langle n_1, n_2, n_3\rangle$ be a numerical semigroup. Let $\tilde
H$ be the interval completion of $H$, namely the semigroup generated by the... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Mathematics - Commutative Algebra |
Title | Betti numbers of the tangent cones of monomial space curves |
URI | https://arxiv.org/abs/2307.05589 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ1JS0MxEICHticvoqjUlRy8RtPm5SXBk4q1COqlQm8lywR6cKF9Lf78TvIqevGaDTJZ5ssyMwCXCS16LSP3OiROGl9w65zh0gSTN0RUJSTL80s9fquepmraAfZjC-MW3_N16x_YL6_zL-UroZSxXegOh_nL1uPrtH2cLK64tuV_yxFjlqQ_SmK0B7tbumO37XDsQwc_DuDmDptmztrYG0v2mRhBF2tcsWpiITvLz4nvxUKYatMaD8jCarHG5SFMRg-T-zHfxizgrtaWY62JgZIXSaQgCR6cFRK1iTTXTdDaD2KsUlLDROhFaBJqAhRFm5WVKH2l5RH06NiPfWDSxqBrF5OqYqWkII6hZkyNnvRaSO4Y-qWns6_WLcUsC2FWhHDyf9Yp7OSA6fl2ciDOoNcsVnhOarXxF0W2G58Rd08 |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Betti+numbers+of+the+tangent+cones+of+monomial+space+curves&rft.au=Lan%2C+Nguyen+P.+H&rft.au=Tu%2C+Nguyen+Chanh&rft.au=Vu%2C+Thanh&rft.date=2023-07-10&rft_id=info:doi/10.48550%2Farxiv.2307.05589&rft.externalDocID=2307_05589 |