Betti numbers of the tangent cones of monomial space curves

Let $H = \langle n_1, n_2, n_3\rangle$ be a numerical semigroup. Let $\tilde H$ be the interval completion of $H$, namely the semigroup generated by the interval $\langle n_1, n_1+1, \ldots, n_3\rangle$. Let $K$ be a field and $K[H]$ the semigroup ring generated by $H$. Let $I_H^*$ be the defining i...

Full description

Saved in:
Bibliographic Details
Main Authors Lan, Nguyen P. H, Tu, Nguyen Chanh, Vu, Thanh
Format Journal Article
LanguageEnglish
Published 10.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let $H = \langle n_1, n_2, n_3\rangle$ be a numerical semigroup. Let $\tilde H$ be the interval completion of $H$, namely the semigroup generated by the interval $\langle n_1, n_1+1, \ldots, n_3\rangle$. Let $K$ be a field and $K[H]$ the semigroup ring generated by $H$. Let $I_H^*$ be the defining ideal of the tangent cone of $K[H]$. In this paper, we describe the defining equations of $I_H^*$. From that, we establish the Herzog-Stamate conjecture for monomial space curves stating that $\beta_i(I_H^*) \le \beta_i(I_{\tilde H}^*)$ for all $i$, where $\beta_i(I_H^*)$ and $\beta_i(I_{\tilde H}^*)$ are the $i$th Betti numbers of $I_H^*$ and $I_{\tilde H}^*$ respectively.
AbstractList Let $H = \langle n_1, n_2, n_3\rangle$ be a numerical semigroup. Let $\tilde H$ be the interval completion of $H$, namely the semigroup generated by the interval $\langle n_1, n_1+1, \ldots, n_3\rangle$. Let $K$ be a field and $K[H]$ the semigroup ring generated by $H$. Let $I_H^*$ be the defining ideal of the tangent cone of $K[H]$. In this paper, we describe the defining equations of $I_H^*$. From that, we establish the Herzog-Stamate conjecture for monomial space curves stating that $\beta_i(I_H^*) \le \beta_i(I_{\tilde H}^*)$ for all $i$, where $\beta_i(I_H^*)$ and $\beta_i(I_{\tilde H}^*)$ are the $i$th Betti numbers of $I_H^*$ and $I_{\tilde H}^*$ respectively.
Author Tu, Nguyen Chanh
Vu, Thanh
Lan, Nguyen P. H
Author_xml – sequence: 1
  givenname: Nguyen P. H
  surname: Lan
  fullname: Lan, Nguyen P. H
– sequence: 2
  givenname: Nguyen Chanh
  surname: Tu
  fullname: Tu, Nguyen Chanh
– sequence: 3
  givenname: Thanh
  surname: Vu
  fullname: Vu, Thanh
BackLink https://doi.org/10.48550/arXiv.2307.05589$$DView paper in arXiv
BookMark eNotj81OwzAQhH2AAxQegBN-gYRN1hvb4gQVf1IlLr1HjrOGSI1TOW4Fb08JnEYa6RvNdynO4hRZiJsKSmWI4M6lr-FY1gi6BCJjL8T9I-c8yHgYO06znILMnyyzix8cs_QnfinHKU7j4HZy3jvP0h_SkecrcR7cbubr_1yJ7fPTdv1abN5f3tYPm8I12hbcaCAVOggQPFY1OQvI2vRAaLzWXdX3KgSqA1SItvaNQUvqhCJjpzSuxO3f7PK-3adhdOm7_bVoFwv8AdULQro
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/4.0
DBID AKZ
GOX
DOI 10.48550/arxiv.2307.05589
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2307_05589
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a679-e67054fb0f0fc3125a903e78d0538c77b1dd4ff52f013392c6839546793e3b473
IEDL.DBID GOX
IngestDate Mon Jan 08 05:38:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a679-e67054fb0f0fc3125a903e78d0538c77b1dd4ff52f013392c6839546793e3b473
OpenAccessLink https://arxiv.org/abs/2307.05589
ParticipantIDs arxiv_primary_2307_05589
PublicationCentury 2000
PublicationDate 2023-07-10
PublicationDateYYYYMMDD 2023-07-10
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-10
  day: 10
PublicationDecade 2020
PublicationYear 2023
Score 1.8917302
SecondaryResourceType preprint
Snippet Let $H = \langle n_1, n_2, n_3\rangle$ be a numerical semigroup. Let $\tilde H$ be the interval completion of $H$, namely the semigroup generated by the...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Commutative Algebra
Title Betti numbers of the tangent cones of monomial space curves
URI https://arxiv.org/abs/2307.05589
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ1JS0MxEICHticvoqjUlRy8RtPm5SXBk4q1COqlQm8lywR6cKF9Lf78TvIqevGaDTJZ5ssyMwCXCS16LSP3OiROGl9w65zh0gSTN0RUJSTL80s9fquepmraAfZjC-MW3_N16x_YL6_zL-UroZSxXegOh_nL1uPrtH2cLK64tuV_yxFjlqQ_SmK0B7tbumO37XDsQwc_DuDmDptmztrYG0v2mRhBF2tcsWpiITvLz4nvxUKYatMaD8jCarHG5SFMRg-T-zHfxizgrtaWY62JgZIXSaQgCR6cFRK1iTTXTdDaD2KsUlLDROhFaBJqAhRFm5WVKH2l5RH06NiPfWDSxqBrF5OqYqWkII6hZkyNnvRaSO4Y-qWns6_WLcUsC2FWhHDyf9Yp7OSA6fl2ciDOoNcsVnhOarXxF0W2G58Rd08
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Betti+numbers+of+the+tangent+cones+of+monomial+space+curves&rft.au=Lan%2C+Nguyen+P.+H&rft.au=Tu%2C+Nguyen+Chanh&rft.au=Vu%2C+Thanh&rft.date=2023-07-10&rft_id=info:doi/10.48550%2Farxiv.2307.05589&rft.externalDocID=2307_05589