Betti numbers of the tangent cones of monomial space curves
Let $H = \langle n_1, n_2, n_3\rangle$ be a numerical semigroup. Let $\tilde H$ be the interval completion of $H$, namely the semigroup generated by the interval $\langle n_1, n_1+1, \ldots, n_3\rangle$. Let $K$ be a field and $K[H]$ the semigroup ring generated by $H$. Let $I_H^*$ be the defining i...
Saved in:
Main Authors | , , |
---|---|
Format | Journal Article |
Language | English |
Published |
10.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let $H = \langle n_1, n_2, n_3\rangle$ be a numerical semigroup. Let $\tilde
H$ be the interval completion of $H$, namely the semigroup generated by the
interval $\langle n_1, n_1+1, \ldots, n_3\rangle$. Let $K$ be a field and
$K[H]$ the semigroup ring generated by $H$. Let $I_H^*$ be the defining ideal
of the tangent cone of $K[H]$. In this paper, we describe the defining
equations of $I_H^*$. From that, we establish the Herzog-Stamate conjecture for
monomial space curves stating that $\beta_i(I_H^*) \le \beta_i(I_{\tilde H}^*)$
for all $i$, where $\beta_i(I_H^*)$ and $\beta_i(I_{\tilde H}^*)$ are the $i$th
Betti numbers of $I_H^*$ and $I_{\tilde H}^*$ respectively. |
---|---|
DOI: | 10.48550/arxiv.2307.05589 |