A surprising excess of radio emission in extremely stable quasars: a unique clue to jet launching?

Quasars are generally divided into jetted radio-loud and non-jetted radio-quiet ones, but why only 10% quasars are radio loud has been puzzling for decades. Other than jet-induced-phenomena, black hole mass, or Eddington ratio, prominent difference between jetted and non-jetted quasars has scarcely...

Full description

Saved in:
Bibliographic Details
Main Authors Kang, Wen-Yong, Wang, Jun-Xian, Cai, Zhen-Yi, Wang, Hao-Chen, Ren, Wen-Ke, Liao, Mai, Yuan, Feng, Zdziarski, Andrzej, Cao, Xinwu
Format Journal Article
LanguageEnglish
Published 18.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Quasars are generally divided into jetted radio-loud and non-jetted radio-quiet ones, but why only 10% quasars are radio loud has been puzzling for decades. Other than jet-induced-phenomena, black hole mass, or Eddington ratio, prominent difference between jetted and non-jetted quasars has scarcely been detected. Here we show a unique distinction between them and the mystery of jet launching could be disclosed by a prominent excess of radio emission in extremely stable quasars (ESQs, i.e., type 1 quasars with extremely weak variability in UV/optical over 10 years). Specifically, we find that $>$ 25% of the ESQs are detected by the FIRST/VLASS radio survey, while only $\sim$ 6-8% of the control sample, matched in redshift, luminosity, and Eddington ratio, are radio-detected. The excess of radio detection in ESQs has a significance of 4.4 $\sigma$ (99.9995%), and dominantly occurs at intermediate radio loudness with R $\sim$ 10 - 60. The radio detection fraction of ESQs also tends to increase in the ESQ samples selected with more stringent thresholds. Our results are in contrast to the common view that RL quasars are likely more variable in UV/optical due to jet contribution. New clues/challenge posed by our findings highlight the importance of extensive follow-up observations to probe the nature of jets in ESQs, and theoretical studies on the link between jet launching and ESQs. Moreover, our results makes ESQs, an essential population which has never been explored, unique targets in the burgeoning era of time domain astronomy, like their opposite counterparts of quasars exhibiting extreme variability or changing-look features.
DOI:10.48550/arxiv.2406.13169