CCPM: A Chinese Classical Poetry Matching Dataset

Poetry is one of the most important art forms of human languages. Recently many studies have focused on incorporating some linguistic features of poetry, such as style and sentiment, into its understanding or generation system. However, there is no focus on understanding or evaluating the semantics...

Full description

Saved in:
Bibliographic Details
Main Authors Li, Wenhao, Qi, Fanchao, Sun, Maosong, Yi, Xiaoyuan, Zhang, Jiarui
Format Journal Article
LanguageEnglish
Published 03.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Poetry is one of the most important art forms of human languages. Recently many studies have focused on incorporating some linguistic features of poetry, such as style and sentiment, into its understanding or generation system. However, there is no focus on understanding or evaluating the semantics of poetry. Therefore, we propose a novel task to assess a model's semantic understanding of poetry by poem matching. Specifically, this task requires the model to select one line of Chinese classical poetry among four candidates according to the modern Chinese translation of a line of poetry. To construct this dataset, we first obtain a set of parallel data of Chinese classical poetry and modern Chinese translation. Then we retrieve similar lines of poetry with the lines in a poetry corpus as negative choices. We name the dataset Chinese Classical Poetry Matching Dataset (CCPM) and release it at https://github.com/THUNLP-AIPoet/CCPM. We hope this dataset can further enhance the study on incorporating deep semantics into the understanding and generation system of Chinese classical poetry. We also preliminarily run two variants of BERT on this dataset as the baselines for this dataset.
DOI:10.48550/arxiv.2106.01979