Disentangling Factors of Variation with Cycle-Consistent Variational Auto-Encoders
Generative models that learn disentangled representations for different factors of variation in an image can be very useful for targeted data augmentation. By sampling from the disentangled latent subspace of interest, we can efficiently generate new data necessary for a particular task. Learning di...
Saved in:
Main Authors | , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
27.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Generative models that learn disentangled representations for different
factors of variation in an image can be very useful for targeted data
augmentation. By sampling from the disentangled latent subspace of interest, we
can efficiently generate new data necessary for a particular task. Learning
disentangled representations is a challenging problem, especially when certain
factors of variation are difficult to label. In this paper, we introduce a
novel architecture that disentangles the latent space into two complementary
subspaces by using only weak supervision in form of pairwise similarity labels.
Inspired by the recent success of cycle-consistent adversarial architectures,
we use cycle-consistency in a variational auto-encoder framework. Our
non-adversarial approach is in contrast with the recent works that combine
adversarial training with auto-encoders to disentangle representations. We show
compelling results of disentangled latent subspaces on three datasets and
compare with recent works that leverage adversarial training. |
---|---|
DOI: | 10.48550/arxiv.1804.10469 |