Log-Sobolev inequalities and hypercontractivity for Ornstein-Uhlenbeck evolution operators in infinite dimensions
In an infinite dimensional separable Hilbert space $X$, we study the realizations of Ornstein-Uhlenbeck evolution operators $\pst$ in the spaces $L^p(X,\g_t)$, $\{\g_t\}_{t\in\R}$ being the unique evolution system of measures for $\pst$ in $\R$. We prove hyperconctractivity results, relying on suita...
Saved in:
Main Authors | , |
---|---|
Format | Journal Article |
Language | English |
Published |
13.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In an infinite dimensional separable Hilbert space $X$, we study the
realizations of Ornstein-Uhlenbeck evolution operators $\pst$ in the spaces
$L^p(X,\g_t)$, $\{\g_t\}_{t\in\R}$ being the unique evolution system of
measures for $\pst$ in $\R$. We prove hyperconctractivity results, relying on
suitable Log-Sobolev estimates. Among the examples we consider the transition
evolution operator of a non autonomous stochastic parabolic PDE. |
---|---|
DOI: | 10.48550/arxiv.2309.07319 |