Dynamic, Symmetry-Preserving, and Hardware-Adaptable Circuits for Quantum Computing Many-Body States and Correlators of the Anderson Impurity Model

We present a hardware-reconfigurable ansatz on $N_q$-qubits for the variational preparation of many-body states of the Anderson impurity model (AIM) with $N_{\text{imp}}+N_{\text{bath}}=N_q/2$ sites, which conserves total charge and spin z-component within each variational search subspace. The many-...

Full description

Saved in:
Bibliographic Details
Main Authors Jones, Eric B, Winkleblack, Cody James, Campbell, Colin, Rotello, Caleb, Dahl, Edward D, Reynolds, Matthew, Graf, Peter, Jones, Wesley
Format Journal Article
LanguageEnglish
Published 23.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a hardware-reconfigurable ansatz on $N_q$-qubits for the variational preparation of many-body states of the Anderson impurity model (AIM) with $N_{\text{imp}}+N_{\text{bath}}=N_q/2$ sites, which conserves total charge and spin z-component within each variational search subspace. The many-body ground state of the AIM is determined as the minimum over all minima of $O(N_q^2)$ distinct charge-spin sectors. Hamiltonian expectation values are shown to require $\omega(N_q) < N_{\text{meas.}} \leq O(N_{\text{imp}}N_{\text{bath}})$ symmetry-preserving, parallelizable measurement circuits, each amenable to post-selection. To obtain the one-particle impurity Green's function we show how initial Krylov vectors can be computed via mid-circuit measurement and how Lanczos iterations can be computed using the symmetry-preserving ansatz. For a single-impurity Anderson model with a number of bath sites increasing from one to six, we show using numerical emulation that the ease of variational ground-state preparation is suggestive of linear scaling in circuit depth and sub-quartic scaling in optimizer complexity. We therefore expect that, combined with time-dependent methods for Green's function computation, our ansatz provides a useful tool to account for electronic correlations on early fault-tolerant processors. Finally, with a view towards computing real materials properties of interest like magnetic susceptibilities and electron-hole propagators, we provide a straightforward method to compute many-body, time-dependent correlation functions using a combination of time evolution, mid-circuit measurement-conditioned operations, and the Hadamard test.
DOI:10.48550/arxiv.2405.15069