Frictional drag between superconducting LaAlO$_3$/SrTiO$_3$ nanowires

We report frictional drag measurements between two superconducting LaAlO$_3$/SrTiO$_3$ nanowires. In these experiments, current passing through one nanowire induces a voltage across a nearby electrically isolated nanowire. The frictional drag signal contains both symmetric and antisymmetric componen...

Full description

Saved in:
Bibliographic Details
Main Authors Tang, Yuhe, Lee, Jung-Woo, Tylan-Tyler, Anthony, Lee, Hyungwoo, Tomczyk, Michelle, Huang, Mengchen, Eom, Chang-Beom, Irvin, Patrick, Levy, Jeremy
Format Journal Article
LanguageEnglish
Published 15.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report frictional drag measurements between two superconducting LaAlO$_3$/SrTiO$_3$ nanowires. In these experiments, current passing through one nanowire induces a voltage across a nearby electrically isolated nanowire. The frictional drag signal contains both symmetric and antisymmetric components. The antisymmetric component arises from the rectification of quantum shot noise in the drive nanowire by the broken symmetry in the drag nanowire. The symmetric component in the drag resistance is ascribed to rectification of thermal noise in the drive nanowire during superconducting-normal transition. The suppression of the symmetric component is observed when a normal nanowire is used as either a drag or drive nanowire with the other nanowire superconducting. The absence of symmetric drag resistance between a normal drag nanowire and a superconducting drive nanowire suggests a higher electron-hole asymmetry in the superconducting LaAlO$_3$/SrTiO$_3$ nanowire arising from the 1D nature of superconductivity at LaAlO$_3$/SrTiO$_3$ interface.
DOI:10.48550/arxiv.1912.07078