Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs
We study dynamic $(1-\epsilon)$-approximate rounding of fractional matchings -- a key ingredient in numerous breakthroughs in the dynamic graph algorithms literature. Our first contribution is a surprisingly simple deterministic rounding algorithm in bipartite graphs with amortized update time $O(\e...
Saved in:
Main Authors | , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
20.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study dynamic $(1-\epsilon)$-approximate rounding of fractional matchings
-- a key ingredient in numerous breakthroughs in the dynamic graph algorithms
literature. Our first contribution is a surprisingly simple deterministic
rounding algorithm in bipartite graphs with amortized update time
$O(\epsilon^{-1} \log^2 (\epsilon^{-1} \cdot n))$, matching an (unconditional)
recourse lower bound of $\Omega(\epsilon^{-1})$ up to logarithmic factors.
Moreover, this algorithm's update time improves provided the minimum (non-zero)
weight in the fractional matching is lower bounded throughout. Combining this
algorithm with novel dynamic \emph{partial rounding} algorithms to increase
this minimum weight, we obtain several algorithms that improve this dependence
on $n$. For example, we give a high-probability randomized algorithm with
$\tilde{O}(\epsilon^{-1}\cdot (\log\log n)^2)$-update time against adaptive
adversaries. (We use Soft-Oh notation, $\tilde{O}$, to suppress polylogarithmic
factors in the argument, i.e., $\tilde{O}(f)=O(f\cdot \mathrm{poly}(\log f))$.)
Using our rounding algorithms, we also round known $(1-\epsilon)$-decremental
fractional bipartite matching algorithms with no asymptotic overhead, thus
improving on state-of-the-art algorithms for the decremental bipartite matching
problem. Further, we provide extensions of our results to general graphs and to
maintaining almost-maximal matchings. |
---|---|
AbstractList | We study dynamic $(1-\epsilon)$-approximate rounding of fractional matchings
-- a key ingredient in numerous breakthroughs in the dynamic graph algorithms
literature. Our first contribution is a surprisingly simple deterministic
rounding algorithm in bipartite graphs with amortized update time
$O(\epsilon^{-1} \log^2 (\epsilon^{-1} \cdot n))$, matching an (unconditional)
recourse lower bound of $\Omega(\epsilon^{-1})$ up to logarithmic factors.
Moreover, this algorithm's update time improves provided the minimum (non-zero)
weight in the fractional matching is lower bounded throughout. Combining this
algorithm with novel dynamic \emph{partial rounding} algorithms to increase
this minimum weight, we obtain several algorithms that improve this dependence
on $n$. For example, we give a high-probability randomized algorithm with
$\tilde{O}(\epsilon^{-1}\cdot (\log\log n)^2)$-update time against adaptive
adversaries. (We use Soft-Oh notation, $\tilde{O}$, to suppress polylogarithmic
factors in the argument, i.e., $\tilde{O}(f)=O(f\cdot \mathrm{poly}(\log f))$.)
Using our rounding algorithms, we also round known $(1-\epsilon)$-decremental
fractional bipartite matching algorithms with no asymptotic overhead, thus
improving on state-of-the-art algorithms for the decremental bipartite matching
problem. Further, we provide extensions of our results to general graphs and to
maintaining almost-maximal matchings. |
Author | Kiss, Peter Sidford, Aaron Wajc, David Bhattacharya, Sayan |
Author_xml | – sequence: 1 givenname: Sayan surname: Bhattacharya fullname: Bhattacharya, Sayan – sequence: 2 givenname: Peter surname: Kiss fullname: Kiss, Peter – sequence: 3 givenname: Aaron surname: Sidford fullname: Sidford, Aaron – sequence: 4 givenname: David surname: Wajc fullname: Wajc, David |
BackLink | https://doi.org/10.48550/arXiv.2306.11828$$DView paper in arXiv |
BookMark | eNotj8tOwzAURL2ABRQ-oCv8Awmxb_zIEgotlQqVqu6jW-eGWmqdyDGI_j1pYTXSGWk055ZdhS4QY1NR5KVVqnjE-OO_cwmFzoWw0t6w5QdhzNZ98kc88JdTwKN3fNN9hcaHT961fB7RJd-FsX7H5PYjHrgP_Nn3GJNPxBcR-_1wx65bPAx0_58Ttp2_bmdv2Wq9WM6eVhlqYzNHhKbSFoEIDOqdIwstKKmVgqYSYgcojaRSamvOtLFSlyicFJXUDcCEPfzNXlzqPo7H46k-O9UXJ_gFVUNHxQ |
ContentType | Journal Article |
Copyright | http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: http://creativecommons.org/licenses/by/4.0 |
DBID | AKY GOX |
DOI | 10.48550/arxiv.2306.11828 |
DatabaseName | arXiv Computer Science arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2306_11828 |
GroupedDBID | AKY GOX |
ID | FETCH-LOGICAL-a678-ceea7968a3ee37a6bce83f3526553d911b3a272e426875265d8264a1c21926d33 |
IEDL.DBID | GOX |
IngestDate | Tue Feb 27 12:26:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a678-ceea7968a3ee37a6bce83f3526553d911b3a272e426875265d8264a1c21926d33 |
OpenAccessLink | https://arxiv.org/abs/2306.11828 |
ParticipantIDs | arxiv_primary_2306_11828 |
PublicationCentury | 2000 |
PublicationDate | 2023-06-20 |
PublicationDateYYYYMMDD | 2023-06-20 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-20 day: 20 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
Score | 1.8873415 |
SecondaryResourceType | preprint |
Snippet | We study dynamic $(1-\epsilon)$-approximate rounding of fractional matchings
-- a key ingredient in numerous breakthroughs in the dynamic graph algorithms... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Computer Science - Data Structures and Algorithms |
Title | Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs |
URI | https://arxiv.org/abs/2306.11828 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21nVgQCFD5lAdWA7VTOx35SgtSWwkVKVt0dhwpA2mVhoqfz9kJgoXV5yXn5N672H4P4Dp3VigqezxXjhoUQgBOrN5wJDauJ35rCv3_jvlCzd6j13Sc9oD93IXB-qvctfrAZnvr-fGNp8BxH_pC-CNb02Xabk4GKa5u_u884phh6A9IJAew37E7dt8uxyH0XHUELwt6m_iSvs0Pij21FvDszfsZEW6wdcGSur1eQOE5lcZgpcnKij2UG7-yjWNTryu9PYZV8rx6nPHOwYAjgQAnAEI9UTFK56RGZayLZREU6ccypzJjJAotHKEktQ00mhPZj3BkqYwIlUt5AoNqXbkhMFFYJDIVKSupJRLSGD1CjI0zVlvtilMYhufONq1IReZTkoWUnP0fOoc9b5_ujz6JuwsYNPWnuySQbcxVyPQ3CVp7aw |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Optimal+Dynamic+Rounding+of+Fractional+Matchings+in+Bipartite+Graphs&rft.au=Bhattacharya%2C+Sayan&rft.au=Kiss%2C+Peter&rft.au=Sidford%2C+Aaron&rft.au=Wajc%2C+David&rft.date=2023-06-20&rft_id=info:doi/10.48550%2Farxiv.2306.11828&rft.externalDocID=2306_11828 |