Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs

We study dynamic $(1-\epsilon)$-approximate rounding of fractional matchings -- a key ingredient in numerous breakthroughs in the dynamic graph algorithms literature. Our first contribution is a surprisingly simple deterministic rounding algorithm in bipartite graphs with amortized update time $O(\e...

Full description

Saved in:
Bibliographic Details
Main Authors Bhattacharya, Sayan, Kiss, Peter, Sidford, Aaron, Wajc, David
Format Journal Article
LanguageEnglish
Published 20.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study dynamic $(1-\epsilon)$-approximate rounding of fractional matchings -- a key ingredient in numerous breakthroughs in the dynamic graph algorithms literature. Our first contribution is a surprisingly simple deterministic rounding algorithm in bipartite graphs with amortized update time $O(\epsilon^{-1} \log^2 (\epsilon^{-1} \cdot n))$, matching an (unconditional) recourse lower bound of $\Omega(\epsilon^{-1})$ up to logarithmic factors. Moreover, this algorithm's update time improves provided the minimum (non-zero) weight in the fractional matching is lower bounded throughout. Combining this algorithm with novel dynamic \emph{partial rounding} algorithms to increase this minimum weight, we obtain several algorithms that improve this dependence on $n$. For example, we give a high-probability randomized algorithm with $\tilde{O}(\epsilon^{-1}\cdot (\log\log n)^2)$-update time against adaptive adversaries. (We use Soft-Oh notation, $\tilde{O}$, to suppress polylogarithmic factors in the argument, i.e., $\tilde{O}(f)=O(f\cdot \mathrm{poly}(\log f))$.) Using our rounding algorithms, we also round known $(1-\epsilon)$-decremental fractional bipartite matching algorithms with no asymptotic overhead, thus improving on state-of-the-art algorithms for the decremental bipartite matching problem. Further, we provide extensions of our results to general graphs and to maintaining almost-maximal matchings.
AbstractList We study dynamic $(1-\epsilon)$-approximate rounding of fractional matchings -- a key ingredient in numerous breakthroughs in the dynamic graph algorithms literature. Our first contribution is a surprisingly simple deterministic rounding algorithm in bipartite graphs with amortized update time $O(\epsilon^{-1} \log^2 (\epsilon^{-1} \cdot n))$, matching an (unconditional) recourse lower bound of $\Omega(\epsilon^{-1})$ up to logarithmic factors. Moreover, this algorithm's update time improves provided the minimum (non-zero) weight in the fractional matching is lower bounded throughout. Combining this algorithm with novel dynamic \emph{partial rounding} algorithms to increase this minimum weight, we obtain several algorithms that improve this dependence on $n$. For example, we give a high-probability randomized algorithm with $\tilde{O}(\epsilon^{-1}\cdot (\log\log n)^2)$-update time against adaptive adversaries. (We use Soft-Oh notation, $\tilde{O}$, to suppress polylogarithmic factors in the argument, i.e., $\tilde{O}(f)=O(f\cdot \mathrm{poly}(\log f))$.) Using our rounding algorithms, we also round known $(1-\epsilon)$-decremental fractional bipartite matching algorithms with no asymptotic overhead, thus improving on state-of-the-art algorithms for the decremental bipartite matching problem. Further, we provide extensions of our results to general graphs and to maintaining almost-maximal matchings.
Author Kiss, Peter
Sidford, Aaron
Wajc, David
Bhattacharya, Sayan
Author_xml – sequence: 1
  givenname: Sayan
  surname: Bhattacharya
  fullname: Bhattacharya, Sayan
– sequence: 2
  givenname: Peter
  surname: Kiss
  fullname: Kiss, Peter
– sequence: 3
  givenname: Aaron
  surname: Sidford
  fullname: Sidford, Aaron
– sequence: 4
  givenname: David
  surname: Wajc
  fullname: Wajc, David
BackLink https://doi.org/10.48550/arXiv.2306.11828$$DView paper in arXiv
BookMark eNotj8tOwzAURL2ABRQ-oCv8Awmxb_zIEgotlQqVqu6jW-eGWmqdyDGI_j1pYTXSGWk055ZdhS4QY1NR5KVVqnjE-OO_cwmFzoWw0t6w5QdhzNZ98kc88JdTwKN3fNN9hcaHT961fB7RJd-FsX7H5PYjHrgP_Nn3GJNPxBcR-_1wx65bPAx0_58Ttp2_bmdv2Wq9WM6eVhlqYzNHhKbSFoEIDOqdIwstKKmVgqYSYgcojaRSamvOtLFSlyicFJXUDcCEPfzNXlzqPo7H46k-O9UXJ_gFVUNHxQ
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/4.0
DBID AKY
GOX
DOI 10.48550/arxiv.2306.11828
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2306_11828
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a678-ceea7968a3ee37a6bce83f3526553d911b3a272e426875265d8264a1c21926d33
IEDL.DBID GOX
IngestDate Tue Feb 27 12:26:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a678-ceea7968a3ee37a6bce83f3526553d911b3a272e426875265d8264a1c21926d33
OpenAccessLink https://arxiv.org/abs/2306.11828
ParticipantIDs arxiv_primary_2306_11828
PublicationCentury 2000
PublicationDate 2023-06-20
PublicationDateYYYYMMDD 2023-06-20
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-20
  day: 20
PublicationDecade 2020
PublicationYear 2023
Score 1.8873415
SecondaryResourceType preprint
Snippet We study dynamic $(1-\epsilon)$-approximate rounding of fractional matchings -- a key ingredient in numerous breakthroughs in the dynamic graph algorithms...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Data Structures and Algorithms
Title Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs
URI https://arxiv.org/abs/2306.11828
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21nVgQCFD5lAdWA7VTOx35SgtSWwkVKVt0dhwpA2mVhoqfz9kJgoXV5yXn5N672H4P4Dp3VigqezxXjhoUQgBOrN5wJDauJ35rCv3_jvlCzd6j13Sc9oD93IXB-qvctfrAZnvr-fGNp8BxH_pC-CNb02Xabk4GKa5u_u884phh6A9IJAew37E7dt8uxyH0XHUELwt6m_iSvs0Pij21FvDszfsZEW6wdcGSur1eQOE5lcZgpcnKij2UG7-yjWNTryu9PYZV8rx6nPHOwYAjgQAnAEI9UTFK56RGZayLZREU6ccypzJjJAotHKEktQ00mhPZj3BkqYwIlUt5AoNqXbkhMFFYJDIVKSupJRLSGD1CjI0zVlvtilMYhufONq1IReZTkoWUnP0fOoc9b5_ujz6JuwsYNPWnuySQbcxVyPQ3CVp7aw
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Optimal+Dynamic+Rounding+of+Fractional+Matchings+in+Bipartite+Graphs&rft.au=Bhattacharya%2C+Sayan&rft.au=Kiss%2C+Peter&rft.au=Sidford%2C+Aaron&rft.au=Wajc%2C+David&rft.date=2023-06-20&rft_id=info:doi/10.48550%2Farxiv.2306.11828&rft.externalDocID=2306_11828