Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs

We study dynamic $(1-\epsilon)$-approximate rounding of fractional matchings -- a key ingredient in numerous breakthroughs in the dynamic graph algorithms literature. Our first contribution is a surprisingly simple deterministic rounding algorithm in bipartite graphs with amortized update time $O(\e...

Full description

Saved in:
Bibliographic Details
Main Authors Bhattacharya, Sayan, Kiss, Peter, Sidford, Aaron, Wajc, David
Format Journal Article
LanguageEnglish
Published 20.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study dynamic $(1-\epsilon)$-approximate rounding of fractional matchings -- a key ingredient in numerous breakthroughs in the dynamic graph algorithms literature. Our first contribution is a surprisingly simple deterministic rounding algorithm in bipartite graphs with amortized update time $O(\epsilon^{-1} \log^2 (\epsilon^{-1} \cdot n))$, matching an (unconditional) recourse lower bound of $\Omega(\epsilon^{-1})$ up to logarithmic factors. Moreover, this algorithm's update time improves provided the minimum (non-zero) weight in the fractional matching is lower bounded throughout. Combining this algorithm with novel dynamic \emph{partial rounding} algorithms to increase this minimum weight, we obtain several algorithms that improve this dependence on $n$. For example, we give a high-probability randomized algorithm with $\tilde{O}(\epsilon^{-1}\cdot (\log\log n)^2)$-update time against adaptive adversaries. (We use Soft-Oh notation, $\tilde{O}$, to suppress polylogarithmic factors in the argument, i.e., $\tilde{O}(f)=O(f\cdot \mathrm{poly}(\log f))$.) Using our rounding algorithms, we also round known $(1-\epsilon)$-decremental fractional bipartite matching algorithms with no asymptotic overhead, thus improving on state-of-the-art algorithms for the decremental bipartite matching problem. Further, we provide extensions of our results to general graphs and to maintaining almost-maximal matchings.
DOI:10.48550/arxiv.2306.11828