Geometric percolation of colloids in shear flow

We combine a heuristic theory of geometric percolation and the Smoluchowski theory of colloid dynamics to predict the impact of shear flow on the percolation threshold of hard spherical colloidal particles, and verify our findings by means of molecular dynamics simulations. It appears that the impac...

Full description

Saved in:
Bibliographic Details
Main Authors Pihlajamaa, Ilian, de Bruijn, René, van der Schoot, Paul
Format Journal Article
LanguageEnglish
Published 25.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We combine a heuristic theory of geometric percolation and the Smoluchowski theory of colloid dynamics to predict the impact of shear flow on the percolation threshold of hard spherical colloidal particles, and verify our findings by means of molecular dynamics simulations. It appears that the impact of shear flow is subtle and highly non-trivial, even in the absence of hydrodynamic interactions between the particles. The presence of shear flow can both increase and decrease the percolation threshold, depending on the criterion used for determining whether or not two particles are connected and on the P\'{e}clet number. Our approach opens up a route to quantitatively predict the percolation threshold in nanocomposite materials that, as a rule, are produced under non-equilibrium conditions, making comparison with equilibrium percolation theory tenuous. Our theory can be adapted straightforwardly for application in other types of flow field, and particles of different shape or interacting via other than hard-core potentials.
DOI:10.48550/arxiv.2203.13638