An analog of the Feigin-Frenkel homomorphism for double loop algebras

We prove the existence of a homomorphism of vertex algebras, from the vacuum Verma module over the loop algebra of an untwisted affine algebra, whose construction is analogous to that of the Feigin-Frenkel homomorphism from the vacuum Verma module at critical level over an affine algebra.

Saved in:
Bibliographic Details
Main Author Young, Charles A. S
Format Journal Article
LanguageEnglish
Published 03.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We prove the existence of a homomorphism of vertex algebras, from the vacuum Verma module over the loop algebra of an untwisted affine algebra, whose construction is analogous to that of the Feigin-Frenkel homomorphism from the vacuum Verma module at critical level over an affine algebra.
DOI:10.48550/arxiv.2011.01648