Language-Guided Face Animation by Recurrent StyleGAN-based Generator
Recent works on language-guided image manipulation have shown great power of language in providing rich semantics, especially for face images. However, the other natural information, motions, in language is less explored. In this paper, we leverage the motion information and study a novel task, lang...
Saved in:
Main Authors | , , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
10.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recent works on language-guided image manipulation have shown great power of
language in providing rich semantics, especially for face images. However, the
other natural information, motions, in language is less explored. In this
paper, we leverage the motion information and study a novel task,
language-guided face animation, that aims to animate a static face image with
the help of languages. To better utilize both semantics and motions from
languages, we propose a simple yet effective framework. Specifically, we
propose a recurrent motion generator to extract a series of semantic and motion
information from the language and feed it along with visual information to a
pre-trained StyleGAN to generate high-quality frames. To optimize the proposed
framework, three carefully designed loss functions are proposed including a
regularization loss to keep the face identity, a path length regularization
loss to ensure motion smoothness, and a contrastive loss to enable video
synthesis with various language guidance in one single model. Extensive
experiments with both qualitative and quantitative evaluations on diverse
domains (\textit{e.g.,} human face, anime face, and dog face) demonstrate the
superiority of our model in generating high-quality and realistic videos from
one still image with the guidance of language. Code will be available at
https://github.com/TiankaiHang/language-guided-animation.git. |
---|---|
DOI: | 10.48550/arxiv.2208.05617 |