KCES: A Workflow Containerization Scheduling Scheme Under Cloud-Edge Collaboration Framework

As more IoT applications gradually move towards the cloud-edge collaborative mode, the containerized scheduling of workflows extends from the cloud to the edge. However, given the high delay of the communication network, loose coupling of structure, and resource heterogeneity between cloud and edge,...

Full description

Saved in:
Bibliographic Details
Main Authors Shan, Chenggang, Gao, Runze, Han, Qinghua, Yang, Zhen, Zhang, Jinhui, Xia, Yuanqing
Format Journal Article
LanguageEnglish
Published 02.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As more IoT applications gradually move towards the cloud-edge collaborative mode, the containerized scheduling of workflows extends from the cloud to the edge. However, given the high delay of the communication network, loose coupling of structure, and resource heterogeneity between cloud and edge, workflow containerization scheduling in the cloud-edge scenarios faces the difficulty of resource coordination and application collaboration management. To address these two issues, we propose a KubeEdge-Cloud-Edge-Scheduling scheme named KCES, a workflow containerization scheduling scheme for the KubeEdge cloud-edge framework. The KCES includes a cloud-edge workflow scheduling engine for KubeEdge and workflow scheduling strategies for task horizontal roaming and vertical offloading. Considering the scheduling optimization of cloud-edge workflows, this paper proposes a cloud-edge workflow scheduling model and cloud-edge node model and designs a cloud-edge workflow scheduling engine to maximize cloud-edge resource utilization under the constraint of workflow task delay. A cloud-edge resource hybrid management technology is used to design the cloud-edge resource evaluation and resource allocation algorithms to achieve cloud-edge resource collaboration. Based on the ideas of distributed functional roles and the hierarchical division of computing power, the horizontal roaming among the edges and vertical offloading strategies between the cloud and edges for workflow tasks are designed to realize the cloud-edge application collaboration. Through a customized IoT application workflow instance, experimental results show that KCES is superior to the baseline in total workflow duration, average workflow duration, and resource usage and has the capabilities of horizontal roaming and vertical offloading for workflow tasks.
DOI:10.48550/arxiv.2401.01217