The braided monoidal structure on the category of Hom-type Doi-Hopf modules
Let $(H,\a_H)$ be a Hom-Hopf algebra, $(A,\a_A)$ a right $H$-comodule algebra and $(C,\a_C)$ a left $H$-module coalgebra. Then we have the category $_A\mathcal{M}(H)^C$ of Hom-type Doi-Hopf modules. The aim of this paper is to make the category $_A\mathcal{M}(H)^C$ into a braided monoidal category....
Saved in:
Main Author | |
---|---|
Format | Journal Article |
Language | English |
Published |
28.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let $(H,\a_H)$ be a Hom-Hopf algebra, $(A,\a_A)$ a right $H$-comodule algebra
and $(C,\a_C)$ a left $H$-module coalgebra. Then we have the category
$_A\mathcal{M}(H)^C$ of Hom-type Doi-Hopf modules. The aim of this paper is to
make the category $_A\mathcal{M}(H)^C$ into a braided monoidal category. Our
construction unifies quasitriangular and coquasitriangular Hom-Hopf algebras
and Hom-Yetter-Drinfeld modules. We study tensor identities for monoidal
categories of Hom-type Doi-Hopf modules. Finally we show that the category
$_A\mathcal{M}(H)^C$ is isomorphic to $A\#C^*$-module category. |
---|---|
DOI: | 10.48550/arxiv.1512.08587 |