The braided monoidal structure on the category of Hom-type Doi-Hopf modules

Let $(H,\a_H)$ be a Hom-Hopf algebra, $(A,\a_A)$ a right $H$-comodule algebra and $(C,\a_C)$ a left $H$-module coalgebra. Then we have the category $_A\mathcal{M}(H)^C$ of Hom-type Doi-Hopf modules. The aim of this paper is to make the category $_A\mathcal{M}(H)^C$ into a braided monoidal category....

Full description

Saved in:
Bibliographic Details
Main Author Lu, Daowei
Format Journal Article
LanguageEnglish
Published 28.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let $(H,\a_H)$ be a Hom-Hopf algebra, $(A,\a_A)$ a right $H$-comodule algebra and $(C,\a_C)$ a left $H$-module coalgebra. Then we have the category $_A\mathcal{M}(H)^C$ of Hom-type Doi-Hopf modules. The aim of this paper is to make the category $_A\mathcal{M}(H)^C$ into a braided monoidal category. Our construction unifies quasitriangular and coquasitriangular Hom-Hopf algebras and Hom-Yetter-Drinfeld modules. We study tensor identities for monoidal categories of Hom-type Doi-Hopf modules. Finally we show that the category $_A\mathcal{M}(H)^C$ is isomorphic to $A\#C^*$-module category.
DOI:10.48550/arxiv.1512.08587