On the irreducible representations of the Jordan triple system of $p \times q$ matrices
Let $\mathcal{J}_{\field}$ be the Jordan triple system of all $p \times q$ ($p\neq q$; $p,q >1)$ rectangular matrices over a field $\field$ of characteristic 0 with the triple product $\{x,y,z\}= x y^t z+ z y^t x $, where $y^t$ is the transpose of $y$. We study the universal associative envelope...
Saved in:
Main Author | |
---|---|
Format | Journal Article |
Language | English |
Published |
05.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let $\mathcal{J}_{\field}$ be the Jordan triple system of all $p \times q$
($p\neq q$; $p,q >1)$ rectangular matrices over a field $\field$ of
characteristic 0 with the triple product $\{x,y,z\}= x y^t z+ z y^t x $, where
$y^t$ is the transpose of $y$. We study the universal associative envelope
$\mathcal{U}(\mathcal{J}_{\field})$ of $\mathcal{J}_{\field}$ and show that
$\mathcal{U}(\mathcal{J}_{\field}) \cong M_{p+q \times p+q}(\field)$, where
$M_{p+q\times p+q} (\field)$ is the ordinary associative algebra of all $(p+q)
\times (p+q)$ matrices over $\field$. It follows that there exist only one
nontrivial irreducible representation of $\mathcal{J}_{\field}$. The center of
$\mathcal{U}(\mathcal{J}_{\field})$ is deduced. |
---|---|
DOI: | 10.48550/arxiv.2202.02517 |