Non-Formality of $S^2$ via the free loop space
We show that the $E_1$-equivalence $C^\bullet(S^2) \simeq H^\bullet(S^2)$ does not intertwine the inclusion of constant loops into the free loop space $S^2 \to LS^2$. That is, the isomorphism $HH_\bullet(H^\bullet(S^2)) \cong H^\bullet(LS^2)$ does not preserve the obvious maps to $H^\bullet(S^2)$ th...
Saved in:
Main Authors | , , |
---|---|
Format | Journal Article |
Language | English |
Published |
20.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We show that the $E_1$-equivalence $C^\bullet(S^2) \simeq H^\bullet(S^2)$
does not intertwine the inclusion of constant loops into the free loop space
$S^2 \to LS^2$. That is, the isomorphism $HH_\bullet(H^\bullet(S^2)) \cong
H^\bullet(LS^2)$ does not preserve the obvious maps to $H^\bullet(S^2)$ that
exist on both sides. We give an explicit computation of the defect in terms of
the $E_\infty$-structure on $C^\bullet(S^2)$. Finally, we relate our
calculation to recent work of Poirier-Tradler on the string topology of $S^2$. |
---|---|
DOI: | 10.48550/arxiv.2405.12047 |