Non-Formality of $S^2$ via the free loop space

We show that the $E_1$-equivalence $C^\bullet(S^2) \simeq H^\bullet(S^2)$ does not intertwine the inclusion of constant loops into the free loop space $S^2 \to LS^2$. That is, the isomorphism $HH_\bullet(H^\bullet(S^2)) \cong H^\bullet(LS^2)$ does not preserve the obvious maps to $H^\bullet(S^2)$ th...

Full description

Saved in:
Bibliographic Details
Main Authors McGowan, Ryan, Naef, Florian, O'Callaghan, Brian
Format Journal Article
LanguageEnglish
Published 20.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We show that the $E_1$-equivalence $C^\bullet(S^2) \simeq H^\bullet(S^2)$ does not intertwine the inclusion of constant loops into the free loop space $S^2 \to LS^2$. That is, the isomorphism $HH_\bullet(H^\bullet(S^2)) \cong H^\bullet(LS^2)$ does not preserve the obvious maps to $H^\bullet(S^2)$ that exist on both sides. We give an explicit computation of the defect in terms of the $E_\infty$-structure on $C^\bullet(S^2)$. Finally, we relate our calculation to recent work of Poirier-Tradler on the string topology of $S^2$.
DOI:10.48550/arxiv.2405.12047