A General Framework for Information Extraction using Dynamic Span Graphs

We introduce a general framework for several information extraction tasks that share span representations using dynamically constructed span graphs. The graphs are constructed by selecting the most confident entity spans and linking these nodes with confidence-weighted relation types and coreference...

Full description

Saved in:
Bibliographic Details
Main Authors Luan, Yi, Wadden, Dave, He, Luheng, Shah, Amy, Ostendorf, Mari, Hajishirzi, Hannaneh
Format Journal Article
LanguageEnglish
Published 05.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce a general framework for several information extraction tasks that share span representations using dynamically constructed span graphs. The graphs are constructed by selecting the most confident entity spans and linking these nodes with confidence-weighted relation types and coreferences. The dynamic span graph allows coreference and relation type confidences to propagate through the graph to iteratively refine the span representations. This is unlike previous multi-task frameworks for information extraction in which the only interaction between tasks is in the shared first-layer LSTM. Our framework significantly outperforms the state-of-the-art on multiple information extraction tasks across multiple datasets reflecting different domains. We further observe that the span enumeration approach is good at detecting nested span entities, with significant F1 score improvement on the ACE dataset.
AbstractList We introduce a general framework for several information extraction tasks that share span representations using dynamically constructed span graphs. The graphs are constructed by selecting the most confident entity spans and linking these nodes with confidence-weighted relation types and coreferences. The dynamic span graph allows coreference and relation type confidences to propagate through the graph to iteratively refine the span representations. This is unlike previous multi-task frameworks for information extraction in which the only interaction between tasks is in the shared first-layer LSTM. Our framework significantly outperforms the state-of-the-art on multiple information extraction tasks across multiple datasets reflecting different domains. We further observe that the span enumeration approach is good at detecting nested span entities, with significant F1 score improvement on the ACE dataset.
Author Luan, Yi
He, Luheng
Hajishirzi, Hannaneh
Wadden, Dave
Ostendorf, Mari
Shah, Amy
Author_xml – sequence: 1
  givenname: Yi
  surname: Luan
  fullname: Luan, Yi
– sequence: 2
  givenname: Dave
  surname: Wadden
  fullname: Wadden, Dave
– sequence: 3
  givenname: Luheng
  surname: He
  fullname: He, Luheng
– sequence: 4
  givenname: Amy
  surname: Shah
  fullname: Shah, Amy
– sequence: 5
  givenname: Mari
  surname: Ostendorf
  fullname: Ostendorf, Mari
– sequence: 6
  givenname: Hannaneh
  surname: Hajishirzi
  fullname: Hajishirzi, Hannaneh
BackLink https://doi.org/10.48550/arXiv.1904.03296$$DView paper in arXiv
BookMark eNotz8FOwzAQBFAf4ACFD-CEfyBhHcdmfaxKm1aqxIHeo22yBovGiZwC7d8DgcvMnEZ61-Ii9pGFuFOQl2gMPFA6hc9cOShz0IWzV2I9lxVHTnSQq0Qdf_XpXfo-yU38yY6OoY9yeTomaqb5MYb4Kp_OkbrQyJeBoqwSDW_jjbj0dBj59r9nYrda7hbrbPtcbRbzbUb20WYMVunWk0c2vjGmRUO6VUgOwXlDjrSHpsASAdiyon1ROlNYRLZ7C0bPxP3f7USphxQ6Suf6l1RPJP0NKDFIEA
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
GOX
DOI 10.48550/arxiv.1904.03296
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1904_03296
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a676-e0613dfaf8e5fc55d85a3d18a9809f5a9a3f0c284800e6e1ab24952688e6b6053
IEDL.DBID GOX
IngestDate Mon Jan 08 05:37:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a676-e0613dfaf8e5fc55d85a3d18a9809f5a9a3f0c284800e6e1ab24952688e6b6053
OpenAccessLink https://arxiv.org/abs/1904.03296
ParticipantIDs arxiv_primary_1904_03296
PublicationCentury 2000
PublicationDate 2019-04-05
PublicationDateYYYYMMDD 2019-04-05
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-05
  day: 05
PublicationDecade 2010
PublicationYear 2019
Score 1.7277344
SecondaryResourceType preprint
Snippet We introduce a general framework for several information extraction tasks that share span representations using dynamically constructed span graphs. The graphs...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Computation and Language
Title A General Framework for Information Extraction using Dynamic Span Graphs
URI https://arxiv.org/abs/1904.03296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8QwDLXubmJBIEDHpzKwFnptnSbjCa5UDDBwSN0qp00QS0G9gu7n47Q9wcKSIXGGOLGerdjPANceki1ZyWGJToOEeFCOZFC5KFIVKv8IfLbFk8xfk8cCiwmIXS0Mtdv374Ef2GxuGa2SmzCOtJzClDf7Yt7nYvic7Km4RvlfOfYx-6k_IJEdwP7o3YnlcB2HMLHNEeRLMZI7i2yXCiXYVxRjKZBXjVhtu3aoMRA-Ff1N3A-t4sULm6t48LTSm2NYZ6v1XR6MDQwCkqkMrMfK2pFTFl2FWCukuF4o0irUDklT7MKK8YGdNivtgoxvBB1Jpaw0HGbEJzBrPho7B5GkiEomFCMx5HNIizVqXbH9UGVMaE5h3h-7_Bw4KkqvkbLXyNn_S-ewx_jff46EeAGzrv2yl4yxnbnqFf0DyYp68Q
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Framework+for+Information+Extraction+using+Dynamic+Span+Graphs&rft.au=Luan%2C+Yi&rft.au=Wadden%2C+Dave&rft.au=He%2C+Luheng&rft.au=Shah%2C+Amy&rft.date=2019-04-05&rft_id=info:doi/10.48550%2Farxiv.1904.03296&rft.externalDocID=1904_03296