A General Framework for Information Extraction using Dynamic Span Graphs

We introduce a general framework for several information extraction tasks that share span representations using dynamically constructed span graphs. The graphs are constructed by selecting the most confident entity spans and linking these nodes with confidence-weighted relation types and coreference...

Full description

Saved in:
Bibliographic Details
Main Authors Luan, Yi, Wadden, Dave, He, Luheng, Shah, Amy, Ostendorf, Mari, Hajishirzi, Hannaneh
Format Journal Article
LanguageEnglish
Published 05.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce a general framework for several information extraction tasks that share span representations using dynamically constructed span graphs. The graphs are constructed by selecting the most confident entity spans and linking these nodes with confidence-weighted relation types and coreferences. The dynamic span graph allows coreference and relation type confidences to propagate through the graph to iteratively refine the span representations. This is unlike previous multi-task frameworks for information extraction in which the only interaction between tasks is in the shared first-layer LSTM. Our framework significantly outperforms the state-of-the-art on multiple information extraction tasks across multiple datasets reflecting different domains. We further observe that the span enumeration approach is good at detecting nested span entities, with significant F1 score improvement on the ACE dataset.
DOI:10.48550/arxiv.1904.03296