GraphHD: Efficient graph classification using hyperdimensional computing
Hyperdimensional Computing (HDC) developed by Kanerva is a computational model for machine learning inspired by neuroscience. HDC exploits characteristics of biological neural systems such as high-dimensionality, randomness and a holographic representation of information to achieve a good balance be...
Saved in:
Main Authors | , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
16.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hyperdimensional Computing (HDC) developed by Kanerva is a computational
model for machine learning inspired by neuroscience. HDC exploits
characteristics of biological neural systems such as high-dimensionality,
randomness and a holographic representation of information to achieve a good
balance between accuracy, efficiency and robustness. HDC models have already
been proven to be useful in different learning applications, especially in
resource-limited settings such as the increasingly popular Internet of Things
(IoT). One class of learning tasks that is missing from the current body of
work on HDC is graph classification. Graphs are among the most important forms
of information representation, yet, to this day, HDC algorithms have not been
applied to the graph learning problem in a general sense. Moreover, graph
learning in IoT and sensor networks, with limited compute capabilities,
introduce challenges to the overall design methodology. In this paper, we
present GraphHD$-$a baseline approach for graph classification with HDC. We
evaluate GraphHD on real-world graph classification problems. Our results show
that when compared to the state-of-the-art Graph Neural Networks (GNNs) the
proposed model achieves comparable accuracy, while training and inference times
are on average 14.6$\times$ and 2.0$\times$ faster, respectively. |
---|---|
DOI: | 10.48550/arxiv.2205.07826 |