All-optical modulation with single-photons using electron avalanche
The distinctive characteristics of light such as high-speed propagation, low-loss, low cross-talk and power consumption as well as quantum properties, make it uniquely suitable for various critical applications in communication, high-resolution imaging, optical computing, and emerging quantum inform...
Saved in:
Main Authors | , , , , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
18.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The distinctive characteristics of light such as high-speed propagation,
low-loss, low cross-talk and power consumption as well as quantum properties,
make it uniquely suitable for various critical applications in communication,
high-resolution imaging, optical computing, and emerging quantum information
technologies. One limiting factor though is the weak optical nonlinearity of
conventional media that poses challenges for the control and manipulation of
light, especially with ultra-low, few-photon-level intensities. Notably,
creating a photonic transistor working at single-photon intensities remains an
outstanding challenge. In this work, we demonstrate all-optical modulation
using a beam with single-photon intensity. Such low-energy control is enabled
by the electron avalanche process in a semiconductor triggered by the impact
ionization of charge carriers. This corresponds to achieving a nonlinear
refractive index of n2~7*10^-3m^2/W, which is two orders of magnitude higher
than in the best nonlinear optical media (Table S1). Our approach opens up the
possibility of terahertz-speed optical switching at the single-photon level,
which could enable novel photonic devices and future quantum photonic
information processing and computing, fast logic gates, and beyond.
Importantly, this approach could lead to industry-ready CMOS-compatible and
chip-integrated optical modulation platforms operating with single photons. |
---|---|
DOI: | 10.48550/arxiv.2312.11686 |