Distributions of weights and a question of Wilf
Let $S$ be a numerical semigroup of embedding dimension $e$ and conductor $c$. The question of Wilf is, if $\#(\mathbb N\setminus S)/c\leq e-1/e$. \noindent In (An asymptotic result concerning a question of Wilf, arXiv:1111.2779v1 [math.CO], 2011, Lemma 3), Zhai has shown an analogous inequality for...
Saved in:
Main Authors | , |
---|---|
Format | Journal Article |
Language | English |
Published |
17.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let $S$ be a numerical semigroup of embedding dimension $e$ and conductor
$c$. The question of Wilf is, if $\#(\mathbb N\setminus S)/c\leq e-1/e$.
\noindent In (An asymptotic result concerning a question of Wilf,
arXiv:1111.2779v1 [math.CO], 2011, Lemma 3), Zhai has shown an analogous
inequality for the distribution of weights $x\cdot\gamma$, $x\in\mathbb N^d$,
w.\,r. to a positive weight vector $\gamma$:
\noindent Let $B\subseteq\mathbb N^d$ be finite and the complement of an
$\mathbb N^d$-ideal. Denote by $\operatorname{mean}(B\cdot\gamma)$ the average
weight of $B$. Then \[\operatorname{mean}(B\cdot\gamma)/\max(B\cdot\gamma)\leq
d/d+1.\]
$\bullet$ For the family $\Delta_n:=\{x\in\mathbb N^d|x\cdot\gamma<n+1\}$ of
such sets we are able to show, that
$\operatorname{mean}(\Delta_n\cdot\gamma)/\max(\Delta_n\cdot\gamma)$ converges
to $d/d+1$, as $n$ goes to infinity.
$\bullet$ Applying Zhai's Lemma 3 to the Hilbert function of a positively
graded Artinian algebra yields a new class of numerical semigroups satisfying
Wilf's inequality. |
---|---|
DOI: | 10.48550/arxiv.1804.06146 |