Definite Formulae, Negation-as-Failure, and the Base-extension Semantics of Intuitionistic Propositional Logic
Proof-theoretic semantics (P-tS) is the paradigm of semantics in which meaning in logic is based on proof (as opposed to truth). A particular instance of P-tS for intuitionistic propositional logic (IPL) is its base-extension semantics (B-eS). This semantics is given by a relation called support, ex...
Saved in:
Main Authors | , |
---|---|
Format | Journal Article |
Language | English |
Published |
11.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Proof-theoretic semantics (P-tS) is the paradigm of semantics in which
meaning in logic is based on proof (as opposed to truth). A particular instance
of P-tS for intuitionistic propositional logic (IPL) is its base-extension
semantics (B-eS). This semantics is given by a relation called support,
explaining the meaning of the logical constants, which is parameterized by
systems of rules called bases that provide the semantics of atomic
propositions. In this paper, we interpret bases as collections of definite
formulae and use the operational view of the latter as provided by uniform
proof-search -- the proof-theoretic foundation of logic programming (LP) -- to
establish the completeness of IPL for the B-eS. This perspective allows
negation, a subtle issue in P-tS, to be understood in terms of the
negation-as-failure protocol in LP. Specifically, while the denial of a
proposition is traditionally understood as the assertion of its negation, in
B-eS we may understand the denial of a proposition as the failure to find a
proof of it. In this way, assertion and denial are both prime concepts in P-tS. |
---|---|
DOI: | 10.48550/arxiv.2210.05336 |