UniFL: Improve Stable Diffusion via Unified Feedback Learning
Diffusion models have revolutionized the field of image generation, leading to the proliferation of high-quality models and diverse downstream applications. However, despite these significant advancements, the current competitive solutions still suffer from several limitations, including inferior vi...
Saved in:
Main Authors | , , , , , , , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
08.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Diffusion models have revolutionized the field of image generation, leading
to the proliferation of high-quality models and diverse downstream
applications. However, despite these significant advancements, the current
competitive solutions still suffer from several limitations, including inferior
visual quality, a lack of aesthetic appeal, and inefficient inference, without
a comprehensive solution in sight. To address these challenges, we present
UniFL, a unified framework that leverages feedback learning to enhance
diffusion models comprehensively. UniFL stands out as a universal, effective,
and generalizable solution applicable to various diffusion models, such as
SD1.5 and SDXL. Notably, UniFL incorporates three key components: perceptual
feedback learning, which enhances visual quality; decoupled feedback learning,
which improves aesthetic appeal; and adversarial feedback learning, which
optimizes inference speed. In-depth experiments and extensive user studies
validate the superior performance of our proposed method in enhancing both the
quality of generated models and their acceleration. For instance, UniFL
surpasses ImageReward by 17% user preference in terms of generation quality and
outperforms LCM and SDXL Turbo by 57% and 20% in 4-step inference. Moreover, we
have verified the efficacy of our approach in downstream tasks, including Lora,
ControlNet, and AnimateDiff. |
---|---|
DOI: | 10.48550/arxiv.2404.05595 |