Utilizing Adversarial Targeted Attacks to Boost Adversarial Robustness

Adversarial attacks have been shown to be highly effective at degrading the performance of deep neural networks (DNNs). The most prominent defense is adversarial training, a method for learning a robust model. Nevertheless, adversarial training does not make DNNs immune to adversarial perturbations....

Full description

Saved in:
Bibliographic Details
Main Authors Pesso, Uriya, Bibas, Koby, Feder, Meir
Format Journal Article
LanguageEnglish
Published 04.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Adversarial attacks have been shown to be highly effective at degrading the performance of deep neural networks (DNNs). The most prominent defense is adversarial training, a method for learning a robust model. Nevertheless, adversarial training does not make DNNs immune to adversarial perturbations. We propose a novel solution by adopting the recently suggested Predictive Normalized Maximum Likelihood. Specifically, our defense performs adversarial targeted attacks according to different hypotheses, where each hypothesis assumes a specific label for the test sample. Then, by comparing the hypothesis probabilities, we predict the label. Our refinement process corresponds to recent findings of the adversarial subspace properties. We extensively evaluate our approach on 16 adversarial attack benchmarks using ResNet-50, WideResNet-28, and a2-layer ConvNet trained with ImageNet, CIFAR10, and MNIST, showing a significant improvement of up to 5.7%, 3.7%, and 0.6% respectively.
DOI:10.48550/arxiv.2109.01945