MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning

Since the resurgence of deep learning, vision-language models (VLMs) enhanced by large language models (LLMs) have grown exponentially in popularity. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understand...

Full description

Saved in:
Bibliographic Details
Main Authors Zhao, Haozhe, Cai, Zefan, Si, Shuzheng, Ma, Xiaojian, An, Kaikai, Chen, Liang, Liu, Zixuan, Wang, Sheng, Han, Wenjuan, Chang, Baobao
Format Journal Article
LanguageEnglish
Published 14.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Since the resurgence of deep learning, vision-language models (VLMs) enhanced by large language models (LLMs) have grown exponentially in popularity. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understanding complex multi-modal prompts with multiple images, making VLMs less effective in downstream vision-language tasks. In this paper, we address the limitation above by 1) introducing vision-language Model with Multi-Modal In-Context Learning(MMICL), a new approach to allow the VLM to deal with multi-modal inputs efficiently; 2) proposing a novel context scheme to augment the in-context learning ability of the VLM; 3) constructing the Multi-modal In-Context Learning (MIC) dataset, designed to enhance the VLM's ability to understand complex multi-modal prompts. Our experiments confirm that MMICL achieves new state-of-the-art zero-shot performance on a wide range of general vision-language tasks, especially for complex benchmarks, including MME and MMBench. Our analysis demonstrates that MMICL effectively tackles the challenge of complex multi-modal prompt understanding and emerges the impressive ICL ability. Furthermore, we observe that MMICL successfully alleviates language bias in VLMs, a common issue for VLMs that often leads to hallucination when faced with extensive textual context. Our code, dataset, dataset tool, and model are available at https://github.com/PKUnlp-icler/MIC
DOI:10.48550/arxiv.2309.07915