Multi-FLEX: An Automatic Task Sequence Execution Framework to Enable Reactive Motion Planning for Multi-Robot Applications

In this letter, an integrated task planning and reactive motion planning framework termed Multi-FLEX is presented that targets real-world, industrial multi-robot applications. Reactive motion planning has been attractive for the purposes of collision avoidance, particularly when there are sources of...

Full description

Saved in:
Bibliographic Details
Main Authors Misra, Gaurav, Suzumura, Akihiro, Campo, Andres Rodriguez, Chenna, Kautilya, Bailey, Sean, Drinkard, John
Format Journal Article
LanguageEnglish
Published 30.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this letter, an integrated task planning and reactive motion planning framework termed Multi-FLEX is presented that targets real-world, industrial multi-robot applications. Reactive motion planning has been attractive for the purposes of collision avoidance, particularly when there are sources of uncertainty and variation. Most industrial applications, though, typically require parts of motion to be at least partially non-reactive in order to achieve functional objectives. Multi-FLEX resolves this dissonance and enables such applications to take advantage of reactive motion planning. The Multi-FLEX framework achieves 1) coordination of motion requests to resolve task-level conflicts and overlaps, 2) incorporation of application-specific task constraints into online motion planning using the new concepts of task dependency accommodation, task decomposition, and task bundling, and 3) online generation of robot trajectories using a custom, online reactive motion planner. This planner combines fast-to-create, sparse dynamic roadmaps (to find a complete path to the goal) with fast-to-execute, short-horizon, online, optimization-based local planning (for collision avoidance and high performance). To demonstrate, we use two six-degree-of-freedom, high-speed industrial robots in a deburring application to show the ability of this approach to not just handle collision avoidance and task variations, but to also achieve industrial applications.
DOI:10.48550/arxiv.2401.17214