Decision Support Systems in Fisheries and Aquaculture: A systematic review

Decision support systems help decision makers make better decisions in the face of complex decision problems (e.g. investment or policy decisions). Fisheries and Aquaculture is a domain where decision makers face such decisions since they involve factors from many different scientific fields. No sys...

Full description

Saved in:
Bibliographic Details
Main Authors Mathisen, Bjørn Magnus, Haro, Peter, Hanssen, Bård, Björk, Sara, Walderhaug, Ståle
Format Journal Article
LanguageEnglish
Published 25.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Decision support systems help decision makers make better decisions in the face of complex decision problems (e.g. investment or policy decisions). Fisheries and Aquaculture is a domain where decision makers face such decisions since they involve factors from many different scientific fields. No systematic overview of literature describing decision support systems and their application in fisheries and aquaculture has been conducted. This paper summarizes scientific literature that describes decision support systems applied to the domain of Fisheries and Aquaculture. We use an established systematic mapping survey method to conduct our literature mapping. Our research questions are: What decision support systems for fisheries and aquaculture exists? What are the most investigated fishery and aquaculture decision support systems topics and how have these changed over time? Do any current DSS for fisheries provide real- time analytics? Do DSSes in Fisheries and Aquaculture build their models using machine learning done on captured and grounded data? The paper then detail how we employ the systematic mapping method in answering these questions. This results in 27 papers being identified as relevant and gives an exposition on the primary methods concluded in the study for designing a decision support system. We provide an analysis of the research done in the studies collected. We discovered that most literature does not consider multiple aspects for multiple stakeholders in their work. In addition we observed that little or no work has been done with real-time analysis in these decision support systems.
DOI:10.48550/arxiv.1611.08374