Microscopic Theory for the Incoherent Resonant and Coherent Off-Resonant Optical Response of Tellurium

An $\it{ab \,\, initio}$ based fully microscopic approach is applied to study the nonlinear optical response of bulk Tellurium. The structural and electronic properties are calculated from first principles using the shLDA-1/2 method within density functional theory. The resulting bandstructure and d...

Full description

Saved in:
Bibliographic Details
Main Authors Liebscher, S. C, Hagen, M. K, Hader, J, Moloney, J. V, Koch, S. W
Format Journal Article
LanguageEnglish
Published 19.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An $\it{ab \,\, initio}$ based fully microscopic approach is applied to study the nonlinear optical response of bulk Tellurium. The structural and electronic properties are calculated from first principles using the shLDA-1/2 method within density functional theory. The resulting bandstructure and dipole matrix elements serve as input for the quantum mechanical evaluation of the anisotropic linear optical absorption spectra yielding results in excellent agreement with published experimental data. Assuming quasi-equilibrium carrier distributions in the conduction and valence bands, absorption/gain and spontaneous emission spectra are computed from the semiconductor Bloch and luminescence equations. For ultrafast intense off-resonant excitation, the generation of high-harmonics is evaluated and the emission spectra are calculated for samples of different thickness.
DOI:10.48550/arxiv.2108.08834