Endpoint Strichartz estimates with angular integrability and some applications
The endpoint Strichartz estimate $\|e^{it\Delta} f\|_{L_t^2 L_x^\infty} \lesssim \|f\|_{L^2}$ is known to be false in two space dimensions. Taking averages spherically on the polar coordinates $x=\rho\omega$, $\rho>0$, $\omega\in\mathbb{S}^1$, Tao showed a substitute of the form $\|e^{it\Delta} f...
Saved in:
Main Authors | , , |
---|---|
Format | Journal Article |
Language | English |
Published |
29.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The endpoint Strichartz estimate $\|e^{it\Delta} f\|_{L_t^2 L_x^\infty}
\lesssim \|f\|_{L^2}$ is known to be false in two space dimensions. Taking
averages spherically on the polar coordinates $x=\rho\omega$, $\rho>0$,
$\omega\in\mathbb{S}^1$, Tao showed a substitute of the form $\|e^{it\Delta}
f\|_{L_t^2L_\rho^\infty L_\omega^2} \lesssim \|f\|_{L^2}$. Here we address a
weighted version of such spherically averaged estimates. As an application, the
existence of solutions for the inhomogeneous nonlinear Schr\"odinger equation
is shown for $L^2$ data. |
---|---|
DOI: | 10.48550/arxiv.1912.12784 |