Probing magnetic ordering in air stable iron-rich van der Waals minerals
In the rapidly expanding field of two-dimensional materials, magnetic monolayers show great promise for the future applications in nanoelectronics, data storage, and sensing. The research in intrinsically magnetic two-dimensional materials mainly focuses on synthetic iodide and telluride based compo...
Saved in:
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
13.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the rapidly expanding field of two-dimensional materials, magnetic
monolayers show great promise for the future applications in nanoelectronics,
data storage, and sensing. The research in intrinsically magnetic
two-dimensional materials mainly focuses on synthetic iodide and telluride
based compounds, which inherently suffer from the lack of ambient stability. So
far, naturally occurring layered magnetic materials have been vastly
overlooked. These minerals offer a unique opportunity to explore air-stable
complex layered systems with high concentration of local moment bearing ions.
We demonstrate magnetic ordering in iron-rich two-dimensional phyllosilicates,
focusing on mineral species of minnesotaite, annite, and biotite. These are
naturally occurring van der Waals magnetic materials which integrate local
moment baring ions of iron via magnesium/aluminium substitution in their
octahedral sites. Due to self-inherent capping by silicate/aluminate
tetrahedral groups, ultra-thin layers are air-stable. Chemical
characterization, quantitative elemental analysis, and iron oxidation states
were determined via Raman spectroscopy, wavelength disperse X-ray spectroscopy,
X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy.
Superconducting quantum interference device magnetometry measurements were
performed to examine the magnetic ordering. These layered materials exhibit
paramagnetic or superparamagnetic characteristics at room temperature. At low
temperature ferrimagnetic or antiferromagnetic ordering occurs, with the
critical ordering temperature of 38.7 K for minnesotaite, 36.1 K for annite,
and 4.9 K for biotite. In-field magnetic force microscopy on iron bearing
phyllosilicates confirmed the paramagnetic response at room temperature,
present down to monolayers. |
---|---|
DOI: | 10.48550/arxiv.2304.06533 |