GFF: Gated Fully Fusion for Semantic Segmentation
Semantic segmentation generates comprehensive understanding of scenes through densely predicting the category for each pixel. High-level features from Deep Convolutional Neural Networks already demonstrate their effectiveness in semantic segmentation tasks, however the coarse resolution of high-leve...
Saved in:
Main Authors | , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
03.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Semantic segmentation generates comprehensive understanding of scenes through
densely predicting the category for each pixel. High-level features from Deep
Convolutional Neural Networks already demonstrate their effectiveness in
semantic segmentation tasks, however the coarse resolution of high-level
features often leads to inferior results for small/thin objects where detailed
information is important. It is natural to consider importing low level
features to compensate for the lost detailed information in high-level
features.Unfortunately, simply combining multi-level features suffers from the
semantic gap among them. In this paper, we propose a new architecture, named
Gated Fully Fusion (GFF), to selectively fuse features from multiple levels
using gates in a fully connected way. Specifically, features at each level are
enhanced by higher-level features with stronger semantics and lower-level
features with more details, and gates are used to control the propagation of
useful information which significantly reduces the noises during fusion. We
achieve the state of the art results on four challenging scene parsing datasets
including Cityscapes, Pascal Context, COCO-stuff and ADE20K. |
---|---|
DOI: | 10.48550/arxiv.1904.01803 |