Duality for finite Gelfand pairs
Let $\mathrm{G}$ be a split reductive group, $K$ be a non-Archimedean local field, and $O$ be its ring of integers. Satake isomorphism identifies the algebra of compactly supported invariants $\mathbb{C}_c[\mathrm{G}(K)/\mathrm{G}(O))]^{\mathrm{G}(O)}$ with a complexification of the algebra of chara...
Saved in:
Main Author | |
---|---|
Format | Journal Article |
Language | English |
Published |
12.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let $\mathrm{G}$ be a split reductive group, $K$ be a non-Archimedean local
field, and $O$ be its ring of integers. Satake isomorphism identifies the
algebra of compactly supported invariants
$\mathbb{C}_c[\mathrm{G}(K)/\mathrm{G}(O))]^{\mathrm{G}(O)}$ with a
complexification of the algebra of characters of finite-dimensional
representations
$\mathcal{O}(\mathrm{G}^L(\mathbb{C}))^{\mathrm{G}^L(\mathbb{C})}$ of the
Langlands dual group. In this note we report on the results of the study of
analogues of such an isomorphism for finite groups. In our setup we replaced
Gelfand pair $\mathrm{G}(O)\subset \mathrm{G}(K)$ by a finite pair $H\subset
G$. It is convenient to rewrite the character side of the isomorphism as
$\mathcal{O}(\mathrm{G}^L(\mathbb{C}))^{\mathrm{G}^L(\mathbb{C})}=\mathcal{O}((\mathrm{G}^L(\mathbb{C})\times
\mathrm{G}^L(\mathbb{C}))/\mathrm{G}^L(\mathbb{C}))^{\mathrm{G}^L(\mathbb{C})}$.
We replace diagonal Gelfand pair $\mathrm{G}^L(\mathbb{C})\subset
\mathrm{G}^L(\mathbb{C})\times \mathrm{G}^L(\mathbb{C})$ by a dual finite pair
$\check{H}\subset \check{G}$ and use Satake isomorphism as a defining property
of the duality. In this text we make a preliminary study of such duality and
compute a number of nontrivial examples of dual pairs $(H,G)$ and $(\check{H},
\check{G})$. We discuss a possible relation of our constructions to String
Topology. |
---|---|
DOI: | 10.48550/arxiv.1707.03862 |