Inf-sup stabilized Scott--Vogelius pairs on general simplicial grids by Raviart--Thomas enrichment

This paper considers the discretization of the Stokes equations with Scott--Vogelius pairs of finite element spaces on arbitrary shape-regular simplicial grids. A novel way of stabilizing these pairs with respect to the discrete inf-sup condition is proposed and analyzed. The key idea consists in en...

Full description

Saved in:
Bibliographic Details
Main Authors John, Volker, Li, Xu, Merdon, Christian, Rui, Hongxing
Format Journal Article
LanguageEnglish
Published 02.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper considers the discretization of the Stokes equations with Scott--Vogelius pairs of finite element spaces on arbitrary shape-regular simplicial grids. A novel way of stabilizing these pairs with respect to the discrete inf-sup condition is proposed and analyzed. The key idea consists in enriching the continuous polynomials of order $k$ of the Scott--Vogelius velocity space with appropriately chosen and explicitly given Raviart--Thomas bubbles. This approach is inspired by [Li/Rui, IMA J. Numer. Anal, 2021], where the case $k=1$ was studied. The proposed method is pressure-robust, with optimally converging $\boldsymbol{H}^1$-conforming velocity and a small $\boldsymbol{H}(\mathrm{div})$-conforming correction rendering the full velocity divergence-free. For $k\ge d$, with $d$ being the dimension, the method is parameter-free. Furthermore, it is shown that the additional degrees of freedom for the Raviart--Thomas enrichment and also all non-constant pressure degrees of freedom can be condensated, effectively leading to a pressure-robust, inf-sup stable, optimally convergent $\boldsymbol{P}_k \times P_0$ scheme. Aspects of the implementation are discussed and numerical studies confirm the analytic results.
DOI:10.48550/arxiv.2206.01242