FLINT: A Platform for Federated Learning Integration
Cross-device federated learning (FL) has been well-studied from algorithmic, system scalability, and training speed perspectives. Nonetheless, moving from centralized training to cross-device FL for millions or billions of devices presents many risks, including performance loss, developer inertia, p...
Saved in:
Main Authors | , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
24.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cross-device federated learning (FL) has been well-studied from algorithmic,
system scalability, and training speed perspectives. Nonetheless, moving from
centralized training to cross-device FL for millions or billions of devices
presents many risks, including performance loss, developer inertia, poor user
experience, and unexpected application failures. In addition, the corresponding
infrastructure, development costs, and return on investment are difficult to
estimate. In this paper, we present a device-cloud collaborative FL platform
that integrates with an existing machine learning platform, providing tools to
measure real-world constraints, assess infrastructure capabilities, evaluate
model training performance, and estimate system resource requirements to
responsibly bring FL into production. We also present a decision workflow that
leverages the FL-integrated platform to comprehensively evaluate the trade-offs
of cross-device FL and share our empirical evaluations of business-critical
machine learning applications that impact hundreds of millions of users. |
---|---|
DOI: | 10.48550/arxiv.2302.12862 |